
Quantum transport in nanostructures
About the manifestations of quantum mechanics on the 
electrical transport properties of nanoscale conductors
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Moore’s Law
The number of transistors per microchip doubles 
roughly every two years.



Nanoscale electronics 
Atomic point contacts

Molecular junctions

Fast DNA sequencing

Tans et al. (1997)

Scheer et al. (1998) from Nitzan et al. (2003)

Lagerqvist et al. (2006)

Nanotubes/wires

Z.Q. Li et al. (2006)

Organic electronics
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Expected effects for electrons in nanostructures

• Quantum confinement effect
• Tunneling effects

• Charge discreteness and strong electron-electron 
Coulomb interaction effects

• Strong electric field effects

• Ballistic transport effects



Fermi wavelength (λF): de Broglie wavelength of Fermi electrons
in d =  3: λF =  23/2(π/3n)1/3

in d =  2: λF = (2π/n)1/2

in d =  1: λF =  4/n

Important length scales

Elastic mean free path (le): average distance the electrons  
travel without being elastically scattered 

le =  vFτe.    vF denotes the Fermi velocity of the electrons

Phase coherent length (lΦ): average distance the electrons  
travel before their phase is randomized 

lΦ =  vFτΦ.   τΦ denotes the dephasing time of the electrons



Important mesoscopic regimes



Quantum wires and point contact

L >> le

L << le

L

L~W << le



Temperature (K)                     L* (nm)

4.2 (liquid helium)                 < 5000

77 (liquid nitrogen)                < 100

300 (room temperature)         < 10

Typical length scale for mesoscopic regime  

*The numbers just give an order of magnitude



• Large number of states contribute to overall
current

• Large number of electrons
• Resistivity, mobility, electric field, bias voltage, 

macrocopic currents are well-defined
• Quantum effects are averaged out by thermal

effects

Conduction at the macroscale



Conduction at the nanoscale

• Small number of states can affect the overall current
• Wavefunction coherence lengths are comparable to

characteristic device dimensions
• Single electrons charging effects can be significant

These can amount to overall macroscopic electronic
properties that show deviations from bulk electronic
properties



Bolztmann Transport Equation

Based on the semiclassical transport theory, considering the distributions
of carriers to energies and momenta, taking into account scatterings.

The electrons obey the semiclassical equations of motion
v(k) =  (1/ħ)∇kε(k)
dk/dt = −e/ħ (E +v(k) ×B)

The general Boltzmann equation to first order approximation:
φ(k,r,t) = φ(k–dk, r – dr, t–dt) + [∂φ(k,r,t)/∂t]scatter

v(k)�∇φ(k,r,t) − eE/ħ� ∇kφ(k,r,t) + ∂φ(k,r,t)/∂t = [∂φ(k,r,t)/∂t]scatter

Current density equals to the conductance times electric field
j = σE
With simplified Bolztmann equation
σ = ne2 τD/m∗ = ne μ 
the electron mobility  μ ≡ e τD/m∗ .



Flow of electrons between two reservoirs

Electrons obey the Fermi-Dirac
distribution

As T ~ 0 K, this is a step function

A metal/semiconductor electrode

Two electrodes with some other
material (states) in between

Availability of carriers on the left, and
empty slots on the right, how fast the
carriers tunnel from the left to the center
and how fast the carriers tunnel from the
center to the right basically determine the
current.



Four point technique

• Make quick measurements of conductivity on novel 
materials where contacts are not ideal

Bulk Sample

Thin Sheet
t >> s 

thickness t << s 

Typical probe spacing s ~ 1 mm 



2-D nanostructures:  
graphene, metallic thin films, superlattices, … .

1-D nanostructures:  
carbon nanotubes,  quantum wires,  conducting polymers, … .

0-D nanostructures:  
semiconductor nanocrystals,   metal nanoparticles,   
lithographically patterned quantum dots, … .

Gate electrode pattern of 
a quantum dot on 2DEG

SEM image



2D electron gas (2DEG)
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l = de Broglie wavelength of electron
a = thickness of metal film

M
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Electronic Structure of 2-D Systems

D(e) = m* /p!2

eF e

D(e)



Classical Hall effect  (1880 E.H. Hall)

Lorentz-force on electron:

stationary current:

Hall resistance: Rxy = Ey/(jxB) =  1/ρe



2D electrons in magnetic fields: Landau levels

coordinate transformation:

Hamiltonian:

R

X

electron
center of 

cyclotron motion
radial vector of 

cyclotron motion

commutation relations:



2D electrons in magnetic fields: Landau levels

mapping to oscillator:

H =ħwc R² / 2 lm
2 = ħwc ( a+ a  + ½ )

Landau levels



2D electrons in magnetic fields: Landau levels

typical scales:
• length

BB BB

magnetic length
• energy

cyclotron frequencyħ2/mlm2



2D electrons in magnetic fields: Landau levels

degeneracy of Landau levels:
center of cyclotron motion (X,Y) arbitrary à
degeneracy

• 2D density of states (DOS)

• filling factor

one state per area of cyclotron
orbit

# atoms / # flux quanta



Conduction (blue) and valence (pink) bands meet at a conical point with a linear
energy-momentum dispersion for graphene. (b) The graphene carriers condense into
narrow energy levels (Landau levels) when placed in a perpendicular magnetic field,
B. (c) Direct measurement of graphene Landau levels with high resolution scanning
tunneling spectroscopy.

D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. deHeer, P. N. First, and J. A. Stroscio, 
Science 324, 924-927 (2009).

Landau levels in Gaphene



Quantum Hall effect

Semiconductor heterostructure confines 
electron gas to two spatial dimensions.

Quantization of conductivity
for a two-dimensional electron 
gas at very low temperatures 
in a high magnetic field.

AlGaAs

AlGaAs
GaAselectron gas

B
electron gas

I

V



RH = (1/n)(h/e2)



Quantum Hall states

B
Landau levels

Landau level degeneracy integer quantum Hall fractional quantum Hall

incompressible liquid incompressible liquid

edge states

filled level partially filled level
Coulomb repulsion

orbital states



Electronic Structure of 1-D Systems
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Electrical Transport in 1-D
Conductance Quantization & the Landauer Formula

1-D channel with 1 occupied subband 
connecting 2 large reservoir.

Barrier model for imperfect  1-D channel

I n qv= D

Let Δn be the excess right-moving carrier density,  DR(ε) be the corresponding DOS.
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Channel fully depleted of carriers at Vg = –2.1 V.

If channel is not perfectly conducting,
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For multi-channel quasi-1-D systems
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Conductance of a quantum point contact



GaAs/AlGaAs interface :
two-dimensional electron gas

Quantum conductance

Quantum point contact



Electron flow close to a quantum point contact

Fk2
1

=l

Fk

・Electrons are wave 

with wave vector

・Interference stripe

with



Quantum point contact formed in STM



Molecular Break Junctions



Electronic Structure of 0-D Systems

Quantum dots:    Quantized energy levels.
e in spherical potential well: , , ,n l m n le e= ( ) ( ) ( ), , , ,, , ,n l m n l l mr R r Yy q f q f=

For an infinite well with  V = 0  for  r < R :
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β0,0 = π (1S), β0,1 = 4.5  (1P), β0,2 = 5.8  (1D)

β1,0 = 2π (2S), β1,1 = 7.7  (2P)

βn, l = nth root of jl (x).



Semiconductor Nanocrystals

CdSe nanocrystals

For CdSe:

* 0.13cm m=
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For R = 2 nm, 0,1 0,0 0.76 eVe e- =

For e,  ε 0,0 increases as R decreases.
For h,  ε 0,0 decreases as R decreases.
→  Eg increases as R decreases.

Optical spectra of nanocrystals can be tuned 
continuously in visible region.

Applications:  fluorescent labeling,  LED.



Metallic Dots

Small spherical alkali  metallic cluster

Na 
mass spectroscopy

Mass spectroscopy (abundance spectra):
Large abundance at cluster size of magic 

numbers ( 8, 20, 40, 58, … )

→  enhanced stability for filled e-shells.

Average level spacing at εF :

( )
21
3

F

FD Ne
e e

D » =

For Au nanoparticles with  R = 2 nm,  
Δε » 2 meV.

whereas CdSe  gives  Δε » 0.76 eV.

→  ε quantization more influential in  

semiconductor.



Discrete Charge States
Thomas-Fermi approximation: 1 1N N eµ e j+ += -

1N gNU eVe a+= + -

U = interaction between 2 e’s on the dot  = charging energy.
α = rate at which a nearby gate voltage Vg shifts φ of the dot.

Neglecting its dependence on state,  

2eU
C
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gC
C

a =

C = capacitance of dot.
Cg = capacitance between gate & dot

If dot is in weak contact with 
reservoir, e’s will tunnel into it 
until the μ’s are equalized.

Change in Vg required to add an e is



U depends on size &shape of dot & its local environment.

For a spherical dot of radius R surrounded by a spherical metal shell of radius R + d,  

2e dU
R R de

=
+

For  R = 2 nm,  d = 1 nm &   ε = 1,  we have
U = 0.24 eV    >>    kBT = 0.026eV     at  T = 300K

→   Thermal fluctuation  strongly supressed.

For metallic dots of 2nm radius,  Δε » 2meV  →   ΔVg due mostly to U.
For semiC dots, e.g., CdSe,  Δε » 0.76 eV  →   ΔVg due both to Δε &  U.  

Charging effect is destroyed if tunneling rate is too great.
Charge resides in dot for time  δt » RC.   ( R = resistance )

→
h
t
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d

»
h
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»
2

2
1e h

C e R
=

Quantum fluctuation smears out charging effect when  δε » U, i.e., when R ~ h / e2 . 



Conditions for a Coulomb  Blockade

1) The Coulomb energy e2/C needs to exceed the 

thermal energy kBT.

Otherwise an extra electron can get onto the dot with 

thermal energy instead of being blocked by the 

Coulomb energy.  A dot needs to be either small (<10 

nm at 300K) or cold (< 1K for a µm sized dot).

2) The residence time Dt=RC of an electron on the dot 

needs to be so long that the corresponding energy 

uncertainty DE=h/Dt = h/RC is less than the Coulomb 

energy e2/C . That leads to a condition for the tunnel 

resistance between the dot and source/drain:   R > h/e2  

» 26 kW

M MI

C, R
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C.f.  Ohm’s law  R µ L

For a 1-D system with disorder,  all states become localized to some length ξ .
Absence of extended states →  R µ exp( a L / ξ ) ,  a = some constant.
For quasi-1-D systems, one finds  ξ ~ N le , where N = number of occupied subbands. 

For T > 0,  interactions with phonons or other e’s reduce phase coherence to length lφ = A T −α .
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for each coherent segment.

For sufficiently high T,  lφ £ le , coherence is effectively destroyed & ohmic law is recovered.   

Overall  áRñ » incoherent addition of  L / lφ such segments.   

All states  in disordered 2-D systems are also localized.
Only some states (near band edges) in disordered 3-D systems are localized.



Electrical Transport in 0-D

For   T < ( U + Δε ) / kB ,  U & Δε control e flow thru dot.  

Transport thru dot is suppressed 
when µL & µR of leads lie between 
µN & µN+1 (Coulomb blockade)

Transport is possible 
only when µN+1 lies 
between µL & µR . 

→  Coulomb oscillations  of  G( Vg ).



Gate Voltage versus Source-Drain Voltage

The situation gets a bit confusing, because there are two voltages that can 
be varied, the gate voltage Vg and the source-drain voltage Vs-d .

Both affect the conductance. Therefore, one often plots the conductance G
against both voltages (see the next slide for data). 

Schematically, one obtains “Coulomb diamonds”, which are regions with 
a stable electron number N on the dot (and consequently zero 
conductance). 

G

Vs-d

Vg

Vg0 1 2 3 4

1/2 3/2 5/2 7/2





Single  Electron  Transistor  (SET)

Cg

dot

Vg

e- e-

gate

source drain

channel

A  single  electron transistor is similar to a 
normal transistor (below), except

1) the channel is replaced by a small dot.

2) the dot is separated from source and drain 
by thin insulators.

An electron tunnels in two steps: 

source ® dot ® drain

The gate voltage Vg is used to control the 
charge on the gate-dot capacitor Cg .

How can the charge be controlled with the 
precision of a single electron? 

Kouwenhoven et al., Few Electron Quantum 
Dots, Rep. Prog. Phys. 64, 701 (2001). 



Nanoparticle attracted 
electrostatically to the 
gap   between   source 
and   drain  electrodes.
The gate is underneath.

Designs for 
Single Electron Transistors



Two Step Tunneling

source ® dot ® drain

drainsource

dot

empty

N (filled)

N+1 filled

empty

(For a detailed explanation see the annotation in the .ppt version.)



Charging a Dot, One Electron at a Time
Sweeping the gate voltage Vg
changes the charge Qg on the   
gate-dot capacitor Cg . To add        
one electron requires the vol-
tage DVg » e/Cg since Cg=Qg/Vg.

The source-drain conductance          
G is zero for most gate voltages, 
because putting even one extra 
electron onto the dot would cost 
too much Coulomb energy. This   
is called Coulomb blockade .

Electrons can hop onto the dot 
only at a gate voltage where the 
number of electrons on the dot  
flip-flops between N and N+1.         
Their time-averaged number is         
N+½ in that case.

The spacing between these half-
integer conductance peaks is an 
integer.  

dot

DVg » e/Cg

Electrons 
on the dot

N-½    N+½

Cg

e- e-

Vg

NN-1



SET as Extremely Sensitive Charge Detector
At low temperature, the conductance peaks in a SET become very sharp.
Consequently, a very small change in the gate voltage half-way up a peak
produces a large current change, i.e. a large amplification. That makes
the SET extremely sensitive to tiny charges.

The flip side of this sensitivity is that a SET detects every nearby
electron. When it hops from one trap to another, the SET produces a
noise peak.

Sit here:



Including the Energy Levels of a Quantum Dot

Contrary to the Coulomb blockade model, the data show Coulomb diamonds 
with uneven size. Some electron numbers have particularly large diamonds,  
indicating that the corresponding electron number is particularly stable. 

This is reminiscent of the closed electron shells in atoms. Small dots behave 
like artificial atoms when their size shrinks down to the electron wavelength. 
Continuous energy bands become quantized                                                          
(see Lecture 8). Adding one electron requires                                                            
the Coulomb energy U plus the difference DE 
between two quantum levels. If a second electron
is added to the same quantum level
(the same shell in an atom), DE vanishes

and only the Coulomb energy U is needed.

The quantum energy levels can be extracted from the spacing between                 
the conductance peaks by subtracting the Coulomb energy U = e2/C .



Precision Standards from “Single” Electronics

Count individual electrons, pairs, flux quanta  

(f = frequency)

Current I  
Coulomb 
Blockade

Voltage V  
Josephson  

Effect

Resistance R   
Quantum Hall  

Effect

I = e f V = h/2e · 
f

V/I = R = h/e2



Quantum interference

In general: dg small, 
random sign

tnm,a , tnm,b : amplitude for 
transmission along paths a, b

a
b



Quantum interference

Three prototypical examples:
• Disordered wire
• Disordered quantum dot
• Ballistic quantum dot



A2 = (A1 + A2)2 = A1
2 + A2

2 + 2 A1A2 = 4 A1
2

Interference effects double the classical contribution 
and (slightly) suppress the conductance.

Weak localization



Weak (anti-) localization

In a system with the carrier’s spin coupled to its momentum, the spin of the
carrier rotates as it goes around a self-intersecting path, and the direction of this
rotation is opposite for the two directions about the loop. Because of this, the two
paths of any loop interfere destructively, which leads to a lower net resistivity.
This is called weak antilocalization.



Aharonov-Bohm (A-B) Effect

Illustration of interference experiment for Aharonov-Bohm effect



A-B Effect

• Formulations

ò ×=
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(Magnetic A-B Effect)

(Electric A-B Effect)



Ring Oscillations

Ring Oscillation without E/B Field



Ring Oscillations

Ring Oscillations with E/B Field



Ring Oscillation

eNWt
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A-B Ring Applications

A-B Ring in Semiconductor


