Synthesis of Nanoparticles
and Surface Modifications




Self-Assembly

« Static assembly
* Dynamic assembly

— RT =8.314 J/mol x 300 = 2.4 kd/mol

 Driving forces
— Chemisorption
— Surface effect
— Hydrophobic-hydrophilic
— Intermolecular forces
— Capillary force
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Langmuir-Blodgett Films
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Figure 7. Schematic illustration of some of the intrinsic
and extrinsic defects found in SAMs formed on poly-
crystalline substrates. The dark line at the metal—sulfur
interface is a visual guide for the reader and indicates the
changing topography of the substrate itself.
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Figure 21. Schematic illustrations of (a) a mixed SAM
and (b) a patterned SAM. Both types are used for applica-

tions in biology and biochemistry.

Figure 22. Schematic diagram illustrating the effects that
large terminal groups have on the packing density and
organization of SAMs. (a) Small terminal groups such as
—CHa, —CN, etc., do not distort the secondary organization
of the organic layer and have no effect on the sulfur
arrangement. (b) Slightly larger groups (like the branched
amide shown here) begin to distort the organization of the
organic layer, but the strongly favorable energetics of
metal—sulfur binding drive a highly dense arrangement
of adsorbates. (¢c) Large terminal groups (peptides, proteins,
antibodies) sterically are unable to adopt a secondary
organization similar to that for alkanethiols with small
terminal groups. The resulting structures probably are
more disordered and less dense than those formed with the
types of molecules in a and b.
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Figure 23. Schematic illustration of the order—disorder
transition evidenced by SAMs of alkanethiolates termi-

nated with triethylene glycol. The EGs group loses confor-
mational ordering upon solvation in water.
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Self-Assembly

Substrates

Interstitial adhesion layer
Noble metal layer
Organo-sulfur
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Synthesis of Silver Nanoparticles

1. A solution of AGNO, (1.0 x 103 M) in deionized water was
heated until it began to boil.

2. Sodium citrate solution was added dropwise to the silver
nitrate solution as soon as the boiling commenced. The color
of the solution slowly turned into grayish yellow, indicating
the reduction of the Ag+ ions.

3. Heating was continued for an additional 15 min, and then the
solution was cooled to room temperature before employing
for further experimentation.




Synthesis of Gold Nanoparticles

1. Add 20 mL of 1.0 mM HAuClI, to a 50 mL round bottom flask on
a stirring hot plate.

2. Add a magnetic stir bar and bring the solution to a boil.

3. To the boiling solution, add 2 mL of a 1% solution of trisodium
citrate dihydrate

4. The gold sol gradually forms as the citrate reduces the
gold(lll). Stop heating when a deep red color is obtained.
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Construction of Core Shell Ag/Au@SiO, Nanoparticles

1. Under vigorous stirring, 1 ml of the silver/ gold colloids solution was mixed with
250 mL of isopropanol and 25 mL of deionized water.

2. Immediately after the addition of 4 mL of 30% ammonium hydroxide, different
amounts of tetraethoxysilane (TEOS) were added to the reaction mixture.

3. To obtain different silica layer thicknesses, TEOS solutions with a concentration
between 50% and 100% was added to the suspension. The reaction was stirred
at room temperature for 30 minutes and then was allowed to age without
agitation at 4°C overnight.

4. Each suspension of silica-coated silver/gold nanoparticles was washed and
centrifuged, followed by re-suspension in water. The thickness of the silica
layers was determined from TEM images .
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Figure 1. (a) Schematic iliustration of a
silica-core, gold-sheil nanoshell,
indicating inner (ry) and outer () radii
of the sheil layers. (b) Depiction of a
four-layer, concentric nanoshell.

(c) Schematic illustration of a metallic
nanorod. (d) Plot of nanoshell
resonance as a function of core and
shell dimensions, overlaid with reported
spectral ranges of nanorod resonances
(red, transverse piasmon; purple,
longitudinal plasmon), and reported
nanoshell and concentric nanoshell
combined spectral range of plasmon
response.
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Figure 2. Plasmon hybridization and the sphere—cavity mode! for nanosheiis: the interaction
between a sphere (resonance frequency, ws,) and a cavity plasmon (resonance frequency,
) is tuned by varying the thickness of the shell layer of the nanoparticle. Two hybrid
plasmon resonances, the w_ “bright,” or “bonding,” plasmon and the w, “dark,” or
“anti-bonding,” plasmon resonances are formed. The lower-energy plasmon couples most

strongly to the optical fieid.
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Figure 5. (a) Plasmon hybridization picture applied to surface plasmon resonance sensing with nanoshelis: the low-energy “bonding” plasmon, w_ , is
sensitized to changes in its dielectric environment. The blue background schematically denotes the embedding medium for the nanoparticle.

(b) Experimental curves showing plasmon resonance shifts for nanosheili-coated films in various media: (i) carbon disulfide, (ii) toluene,

(iif) hexane, (iv) ethanol, (v) H,O, and (vi) air. The index of refraction for each embedding medium is noted on the far right of the spectra. Spectra
are offset for clarity. (c) Scanning electron micrograph of nanoshells deposited onto a poly(vinyl pyridine) functionalized glass surface, as used
to acquire data in (b). Inset: individual nanoshell.




Preparation of Fe;0,0Ag/Au

1. To the magnetic nanoparticle suspension obtained from commercial company,
add 50 ml of a solution of Au (lll) salt or Ag (I) salt at concentration of 0.01-1%
mmol/L , shaking for 30 minutes, allowing Au (Ill) or Ag (l) ion to absorb on the
surface of magnetic nanoparticle sufficiently,

2. Then adding 15—40 ml of reducing agent, such as hydroxylamine hydrochloride
at concentration of 40 mmol/L, reacting for 5~40 minutes.

3. Further adding 1-10 ml of a solution of Au (lll) salt or Ag (I) salt at concentration
of 0.01-1%, shaking for 10 minutes, coating a reduced layer of gold or silver on
the surface of the magnetic nanopatrticle, forming super-paramagnetic composite
particles having core/shell structure, separating magnetically, washing
repeatedly with distilled water.




Synthesis of Quantum Dots

’ <8
=R :_,}:
’ { Shell
synthesis
Core NC 4
synthesis & || /7
c—’ L, £

Figure 2. Two-step synthesis of core/shell nanocrystals.
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Scheme 1. Electronic energy levels of selected llI-V and II-VI semi-
conductors using the valence-band offsets from Reference [12] (VB:
valence band, CB: conduction band).
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Figure 1. Schematic representation of the energy-level alignment in

different core/shell systems realized with semiconductor NCs to date.
The upper and lower edges of the rectangles correspond to the pos-
itions of the conduction- and valence-band edge of the core (center) and
shell materials, respectively.
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Porous Materials

AAO
MCM-41

Mobil Crystalline Materials, or MCM-41

Santa Barbara Amorphous type material, or SBA-15

Micro: < 2nm
Meso:
Macro: > 50nm
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FIGURE 3. Schematic representation of the use of anionic orga-
noalkoxysilanes for controlling the functionalization of the MSN
materials. The MCM-41-type mesoporous channels are illustrated
by the parallel stripes shown in the transmission electron microscopy
(TEM) micrograph of the MSN-SH material. Reproduced with
permission from ref 15. Copyright 2005, Royal Society of Chemistry.




Hard caps Softcaps

Dendrimer

Antibody

Figure 1. A. Schematic representation of a MSN loaded with drugs and capped with hard caps and soft caps highlighted in this
review. Transmission electron microscopy images of (B) a MSN along the axis of the mesopores, (C) capped with hard (Au NP)
and (D) with soft (polymer) caps.

MSN: Mesoporous s10ca nanopartice.




Figure 5. Schematic representation of the glucose-responsive MSN-based double delivery system for controlled release of
biocactive G-Ins and cyclic AMP. The controlled release mechanism was achieved by mears of the displacement reaction
be tween blood glucose and G-Ins based on reversible boronic acid-diol complexation. High glucose concentration triggers the
G-Ins uncapping and the release of cyclic AMP sequentially to diminish the higher than normal level of blood glucose.
Reproduced with permission from [19).

Grins: G-nsuling MSN: Mesoporous §¢a nanopartice.
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Self-Assembled Block-copolymer
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Substrate
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Fig. 1. Schematic of a CVD reactor for carbon nanotube growth. (Sketch by S. Yarmolenko from
NCA&T State University)
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Surface Functionalization

* Recognition « Surfaces
— Molecular Recognition — Gold and silver
* Protein — Silicon oxide (glass)

* DNA — Quantum dots
 Saccharide Polymer

* Reporting/Detection
— Dye
— Quantum dots
— SPR
— SERS/LSPR

e Separation
— Gel/Chromatography
— Magnetic
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Scheme 1. Modular Design of Hydrophilic Ligands with Terminal
Functional Groups Used in This Study
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Sulfhydryl Labeling
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Silica Modification
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Fig. 1. (A) Emission maxima and sizes of quantum dots of different composrtlon Quantum dots can be
synthesized from various types of semiconductor materials (ll-VI: CdS, CdSe, CdTe...; llI-V: InP, InAs...; IV-VI:
PbSe...) characterized by different bulk band gap energies. The curves represent expenmental data from the
literature on the dependence of peak emission wavelength on qdot diameter. The range of emission wavelength
is 400 to 1350 nm, with size varying from 2 to 9.5 nm (organic passivation/solubilization layer not included).
All spectra are typically around 30 to 50 nm (full width at half maximum). Inset: Representative emission
spectra for some materials. Data are from (72, 18, 27, 76-82). Data for CdHgTe/ZnS have been extrapolated to
the maximum emission wavelength obtained in our group. (B) Absorption (upper curves) and emission (lower curves)
spectra of four CdSe/ZnS qdot samples. The blue vertical line indicates the 488-nm line of an argon-ion laser, which
can be used to efficiently exdte all four types of qdots simultaneously. [Adapted from (28)] (C) Size comparison of
qdots and comparable objects. FITC, fluorescein isothiocyanate; GFP, green fluorescent protein; gdot, green (4 nm, top)
and red (6.5 nm, bottom) CdSe/ZnS qdot; grod, rod-shaped qdot (size from Quantum Dot Corp.’s Web site). Three
proteins—streptavidin (SAV), maltose binding protein (MBP), and immunoglobulin G (lgG)—have been used for
further functionalization of qdots (see text) and add to the final size of the qdot, in conjunction with the solubilization

chemisty (Fig.2). SCIENCE VOL 307 28 JANUARY 2005
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ducing water-soluble QDs, which facilitate further conjugation to ligands with free thiols through
bi-functional cross-linkers.
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Figure 1. Fabrication scheme for the construction of multi-element DNA arrays. A clean gold surface 1s reacted with the amine-terminated alkanethiol
MUAM., and subsequently reacted with Fmoc-NHS to create a hydrophobic surface. This surface 1s then exposed to UV radiation through a quartz
mask and rinsed with solvent to remove the MUAM-+Fmoc from specific areas of the surface, leaving bare gold pads. These bare gold areas on
the sample surface are filled in with MUAM., resulting in an array of MUAM pads surrounded by a hydrophobic Fmoc background. Solutions of
DNA are then delivered by pipet onto the specific array locations and are covalently bound to the surface via the bifunctional linker SSMCC. In
the final two steps, the Fmoc-terminal groups on the array background are removed and replaced by PEG groups which prohibit the nonspecific
binding of analyte proteins to the background.
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Figure 2. Surface reaction scheme showing the steps involved m the

reversible modification of the arrav background. (Step 2) The starting
amine-terminated alkanethiol surface (MUAM) 1s reacted with the
Fmoc-NHS protecting group to form a carbamate linkage thus creating
a hydrophobic Fmoc-terminated surface. (Step 6) After DNA im-
mobilization (see Figure 3), the hydrophobic Fmoc group 1s removed
from the surface with a basic secondary amine. resulting in the returmn
of the original MUAM surface. (Step 7) In the final array fabrication
step, the deprotected MUAM 1is reacted with PEG-NHS to form an
amide bond that covalently attaches PEG to the array surface.
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Figure 3. Surface reaction scheme showing the immobilization of thiol-
terminated DNA to the array surface. In Step 5 of the DNA array
fabrication, the heterobifunctional linker SSMCC 1s used to attach 5'-
thiol modified oligonucleotide sequences to reactive pads of MUAM.
This linker contamns an NHSS ester functionality (reactive toward
amines) and a malemmide functionality (reactive toward thiols). The
surface 1s first exposed to a solution of the linker, whereby the NHSS
ester end of the molecule reacts with the MUAM surface. Excess linker
1s rinsed away and the array surface i1s then spotted with 5'-thiol-
modified DNA that reacts with the maleimide groups forming a covalent
bond to the surface monolayer.
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Figure 2.3 Schematic respresentation of a steptavidin sensor surface assembled on a
reacrinn-controlled biotinylated SAM [28].
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