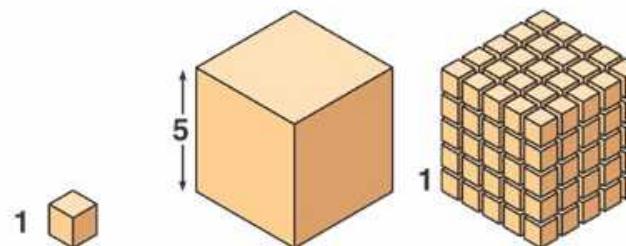


Nanomaterials

- Metals and Alloys
 - Fe, Al, Au
- Semiconductors
 - Band gap, CdS, TiO₂, ZnO
- Ceramic
 - Al₂O₃, Si₃N₄, MgO, , SiO₂, ZrO₂
- Carbon based
 - Diamond, graphite, nanotube, C60, graphene
- Polymers
 - Soft mater, block co-polymer
- Biological
 - Photonic, hydrophobic, adhesive,
- Composites

Surface to Volume Ratio

Surface area increases while total volume remains constant



Total surface area (height \times width \times number of sides \times number of boxes)	6	150	750
Total volume (height \times width \times length \times number of boxes)	1	125	125
Surface-to-volume ratio (surface area / volume)	6	1.2	6

Surface Energy

One face surface energy: γ

27 cube: $27 \times 6 \gamma$

3 x 9 cube line: 114γ

3 x (3x3) square: 90γ

3 x 3 x 3 cube: 54γ

Surface to Volume Ratio

Au: AAA

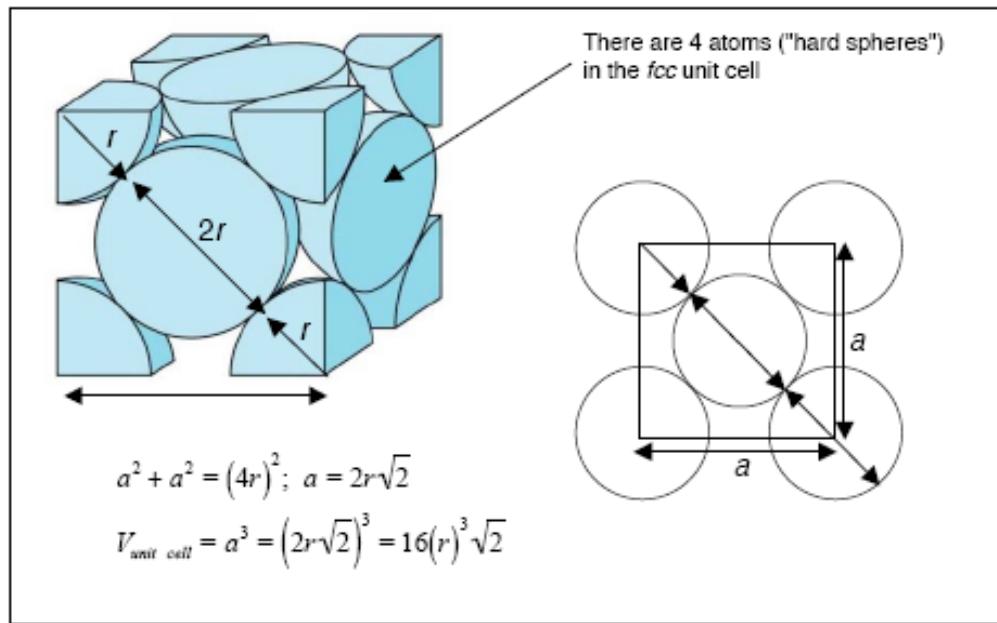
Atomic mass: 196.967

Density 19.31

Radius = 0.144 nm

Number of Au atoms in 1 m	$3.4 \cdot 10^9$
Volume of Au atom	$4.19 \cdot 10^{28}$
Surface area Au atom	$7.22 \cdot 10^{19}$
Surface/volume ratio	$1.72 \cdot 10^{-9}$

fcc



$$V_{\text{unit cell}} = a^3 = (2r\sqrt{2})^3 = 16(0.5\text{nm})^3\sqrt{2} = 2.828 \text{ nm}^3$$

$$\frac{10^{27} \text{ nm}^3}{2.828 \text{ nm}^3} = 3.536 \times 10^{26} \text{ nano unit cells}$$

$$\frac{S_{\text{spheres}}}{S_{\text{unit cell}}} = \frac{4.44 \times 10^9 \text{ m}^2}{6.0 \times 10^9 \text{ m}^2} = 0.74$$

$$\text{Collective Area} = 3.536 \times 10^{26} \text{ nano unit cells} \left(\frac{4 \text{ spheres}}{\text{unit cell}} \right) \left(\frac{4\pi r^2}{\text{sphere}} \right) = 4.44 \times 10^{27} \text{ nm}^2$$

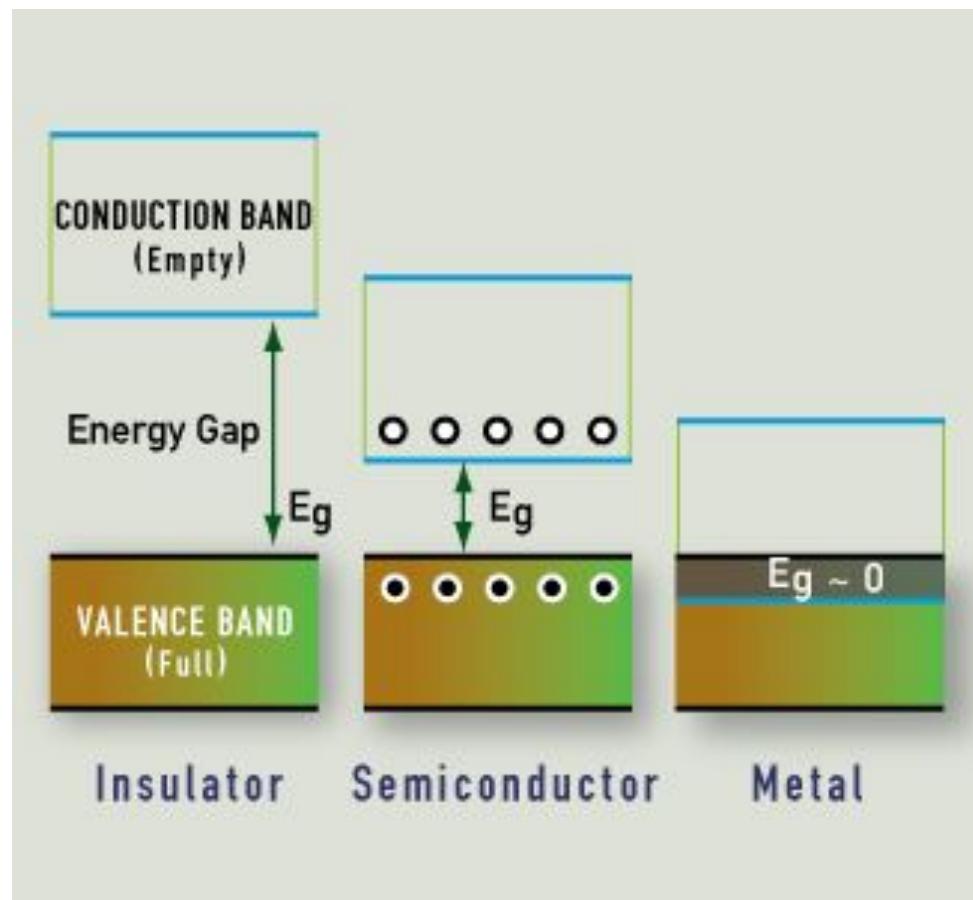
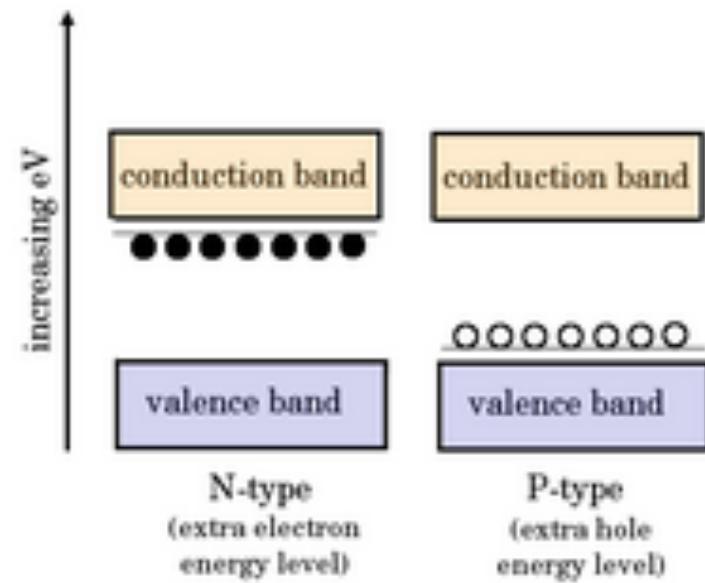
Packing Fraction

$$\text{APF} = \frac{N_{\text{atoms}} V_{\text{atom}}}{V_{\text{crystal}}}$$

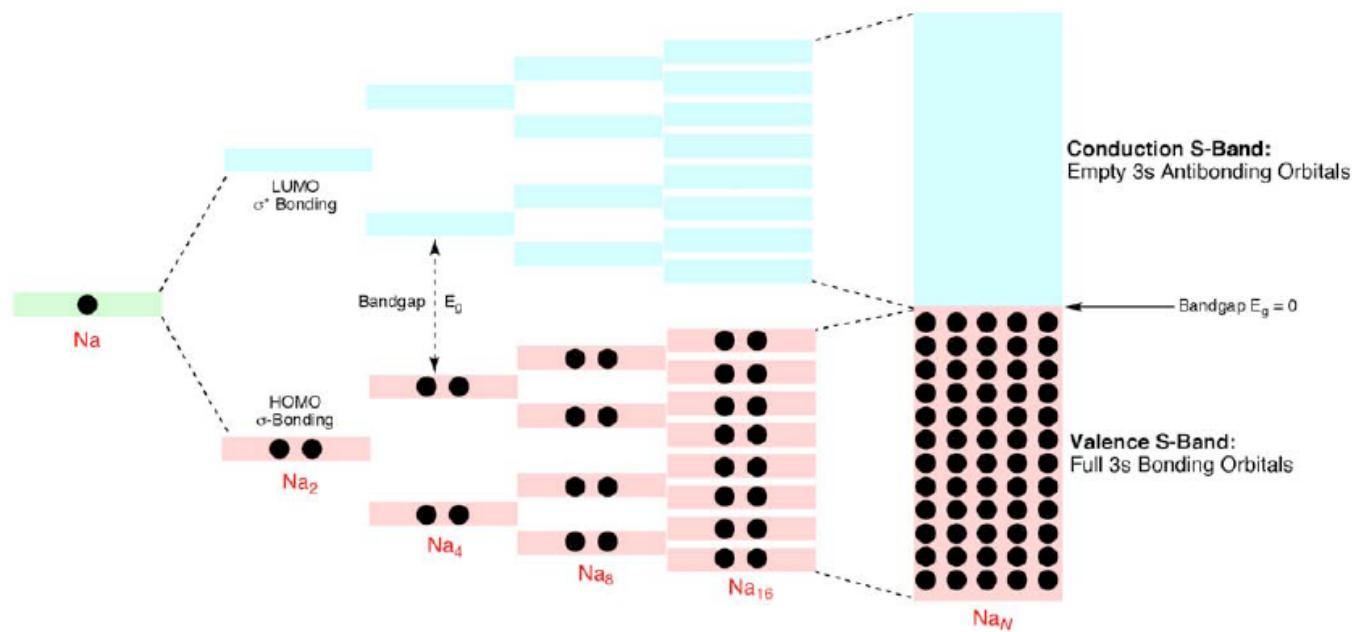
Surfaces

- Collective surface area of nanocube 1 nm
- Porous materials
 - Micropore (<2 nm)
 - Mesopore (2 nm ~ 50 nm)
 - Marcopore (> 50nm)
- Void volume
 - $V_{\text{pore}}/V_{\text{material}}$

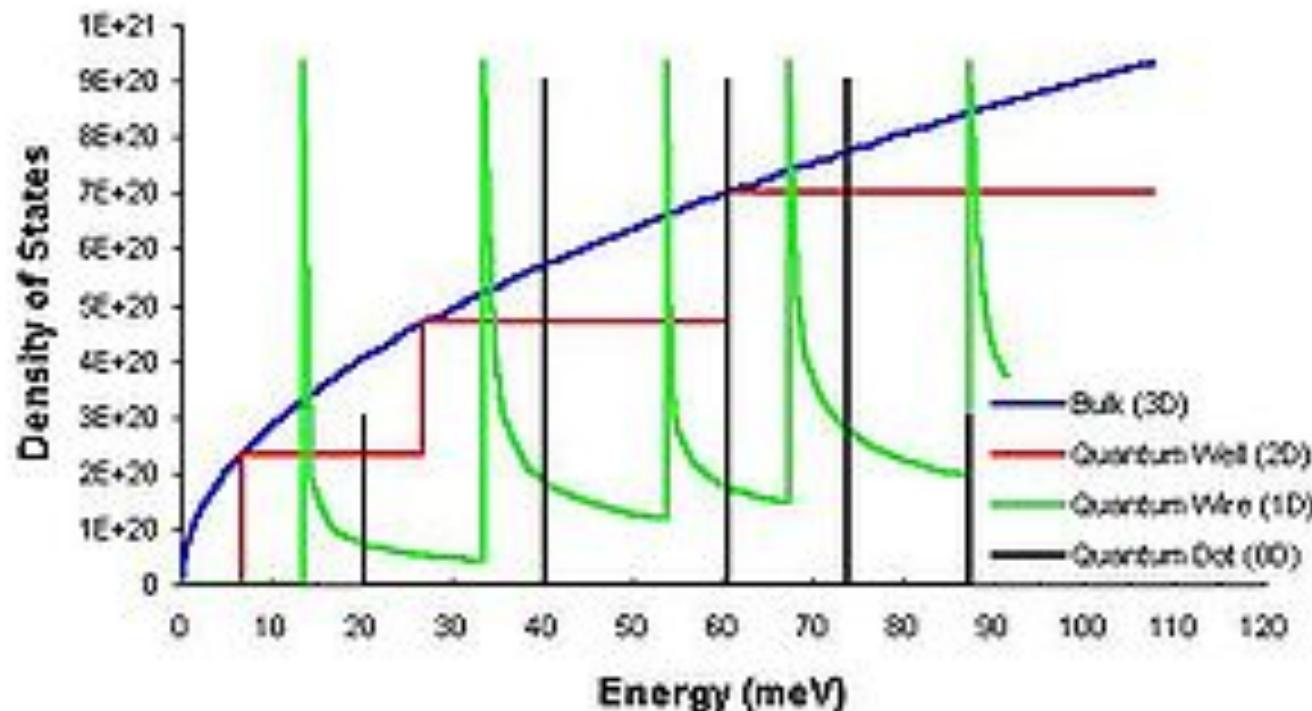
Bandgap



Bandgap



Density of State

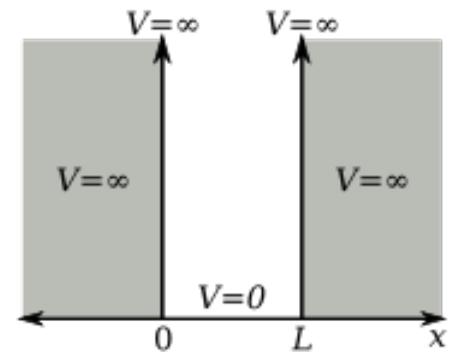


Particle in a Box

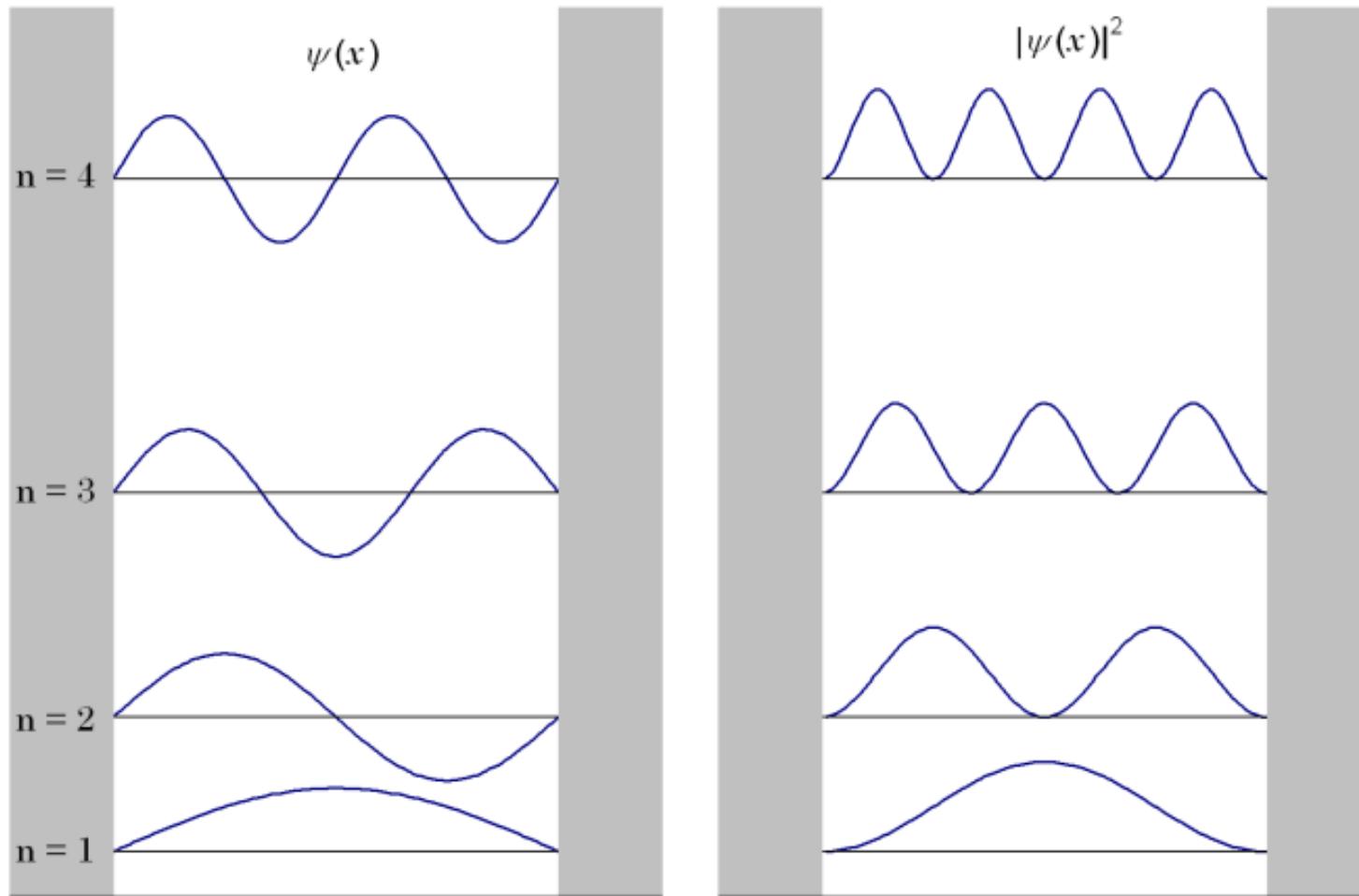
$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x) \quad (1)$$

$$\psi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

$$E_n = \frac{\hbar^2\pi^2}{2mL^2}n^2$$



Particle in a Box



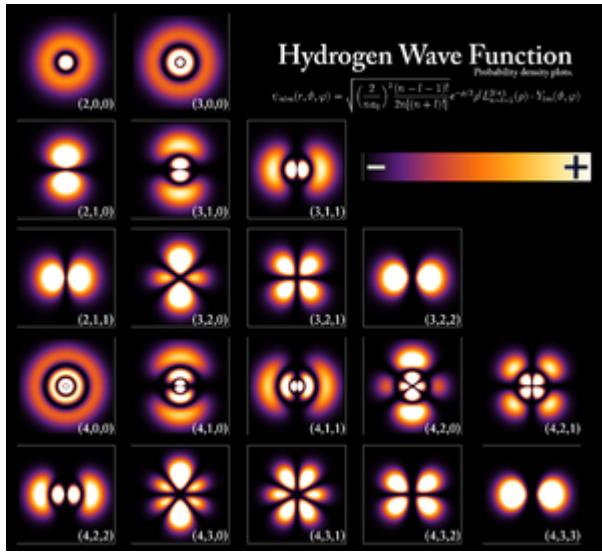
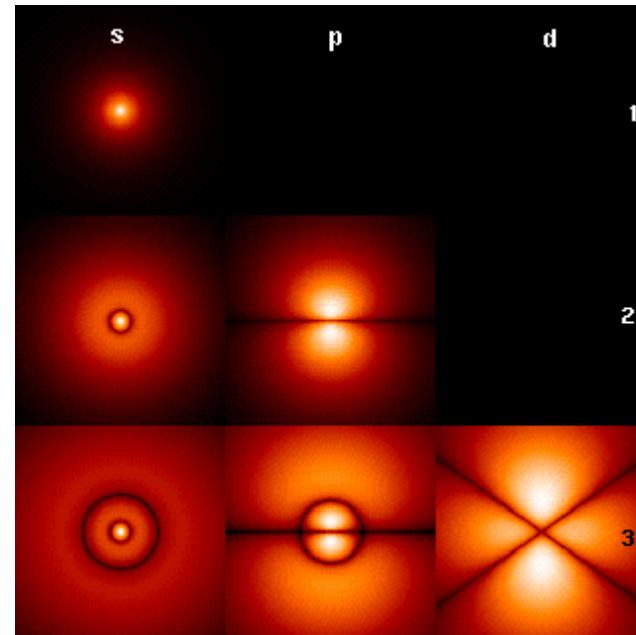
$$\psi_{n_x, n_y} = \sqrt{\frac{4}{L_x L_y}} \sin\left(\frac{n_x \pi x}{L_x}\right) \sin\left(\frac{n_y \pi y}{L_y}\right)$$

$$E_{n_x, n_y} = \frac{\hbar^2 \pi^2}{2m} \left[\left(\frac{n_x}{L_x}\right)^2 + \left(\frac{n_y}{L_y}\right)^2 \right]$$

$$\psi_{n_x, n_y, n_z} = \sqrt{\frac{8}{L_x L_y L_z}} \sin\left(\frac{n_x \pi x}{L_x}\right) \sin\left(\frac{n_y \pi y}{L_y}\right) \sin\left(\frac{n_z \pi z}{L_z}\right) \quad (22)$$

$$E_{n_x, n_y, n_z} = \frac{\hbar^2 \pi^2}{2m} \left[\left(\frac{n_x}{L_x}\right)^2 + \left(\frac{n_y}{L_y}\right)^2 + \left(\frac{n_z}{L_z}\right)^2 \right] \quad (23)$$

Wave Functions



$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \hat{H} \Psi = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right) \Psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r}, t) + V(\mathbf{r}) \Psi(\mathbf{r}, t)$$

$$V(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r}$$

$$\psi_{n\ell m}(r, \vartheta, \varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-r/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_\ell^m(\vartheta, \varphi)$$

Linear combination of atomic orbitals molecular orbital method

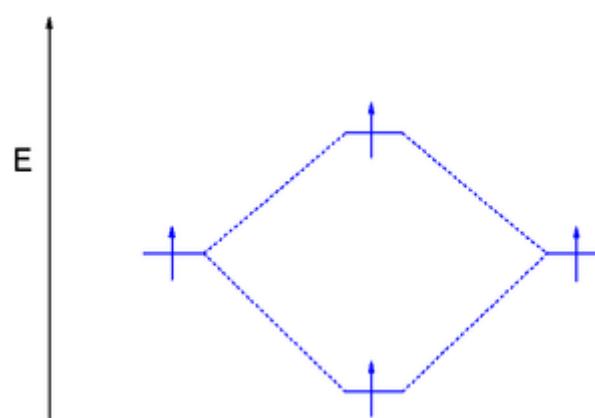
$$\phi_i = c_{1i}\chi_1 + c_{2i}\chi_2 + c_{3i}\chi_3 + \cdots + c_{ni}\chi_n$$

$$\psi_i = \sum_{\mu} c_{\mu i} \phi_{\mu}$$

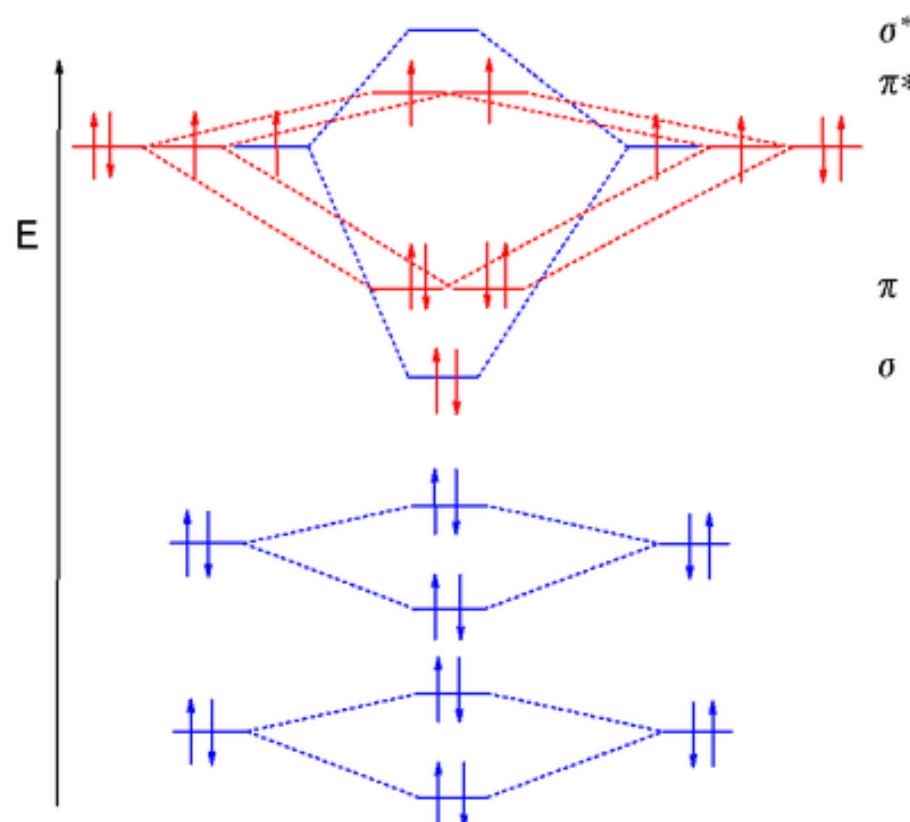
MO

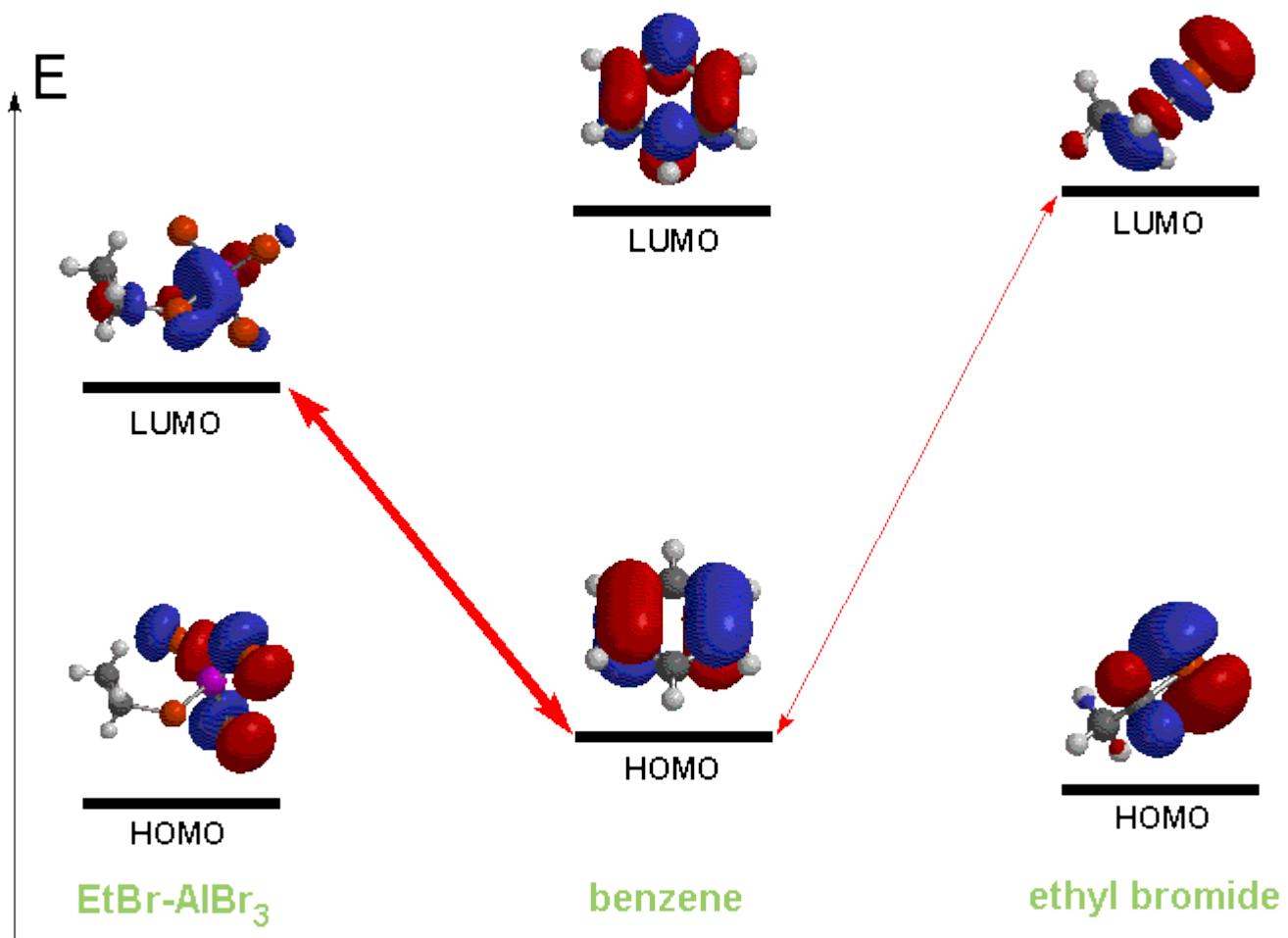
AO

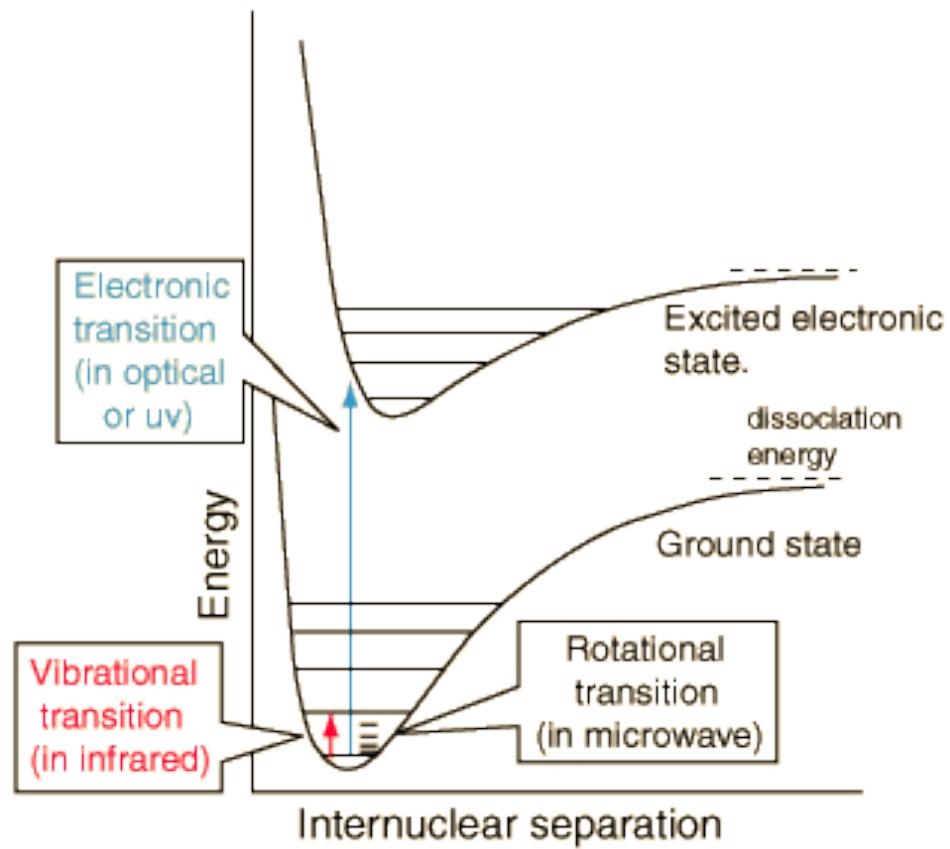
coefficient of AO_μ in MO_i



Oxygen







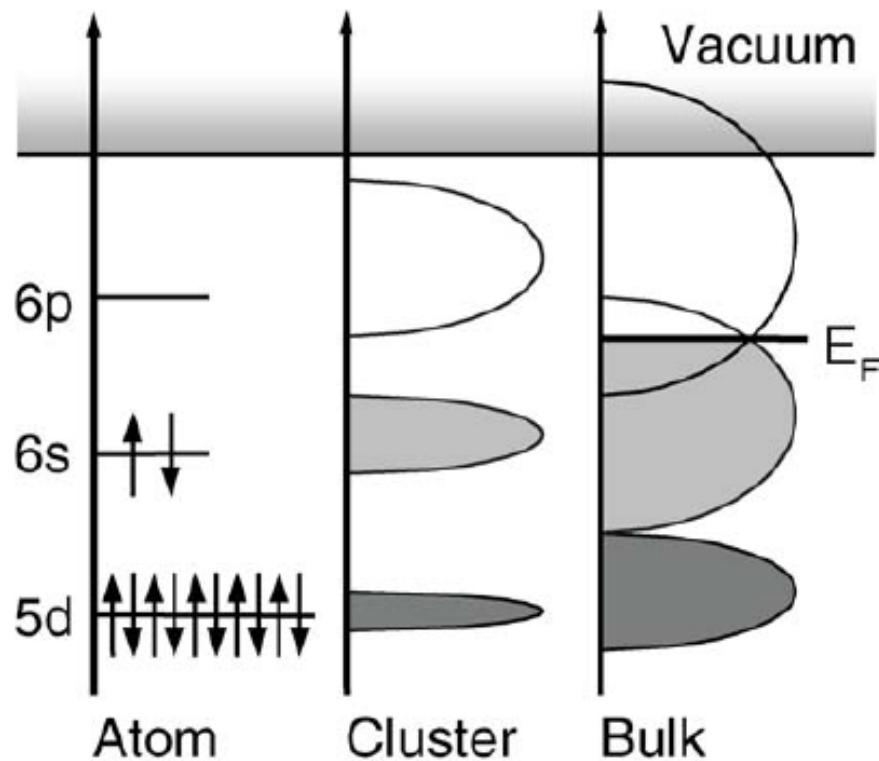


Figure 5 Energy diagram describing a generic Bloch-Wilson MIT in clusters (with specific reference to the energy levels of mercury). For sufficiently large clusters, the $s-p$ band gap closes with increasing cluster size (shaded areas represent energy range with occupied electron levels). Overlap leads to a “continuous” DOS at E_F and to an Insulator to Metal transition.

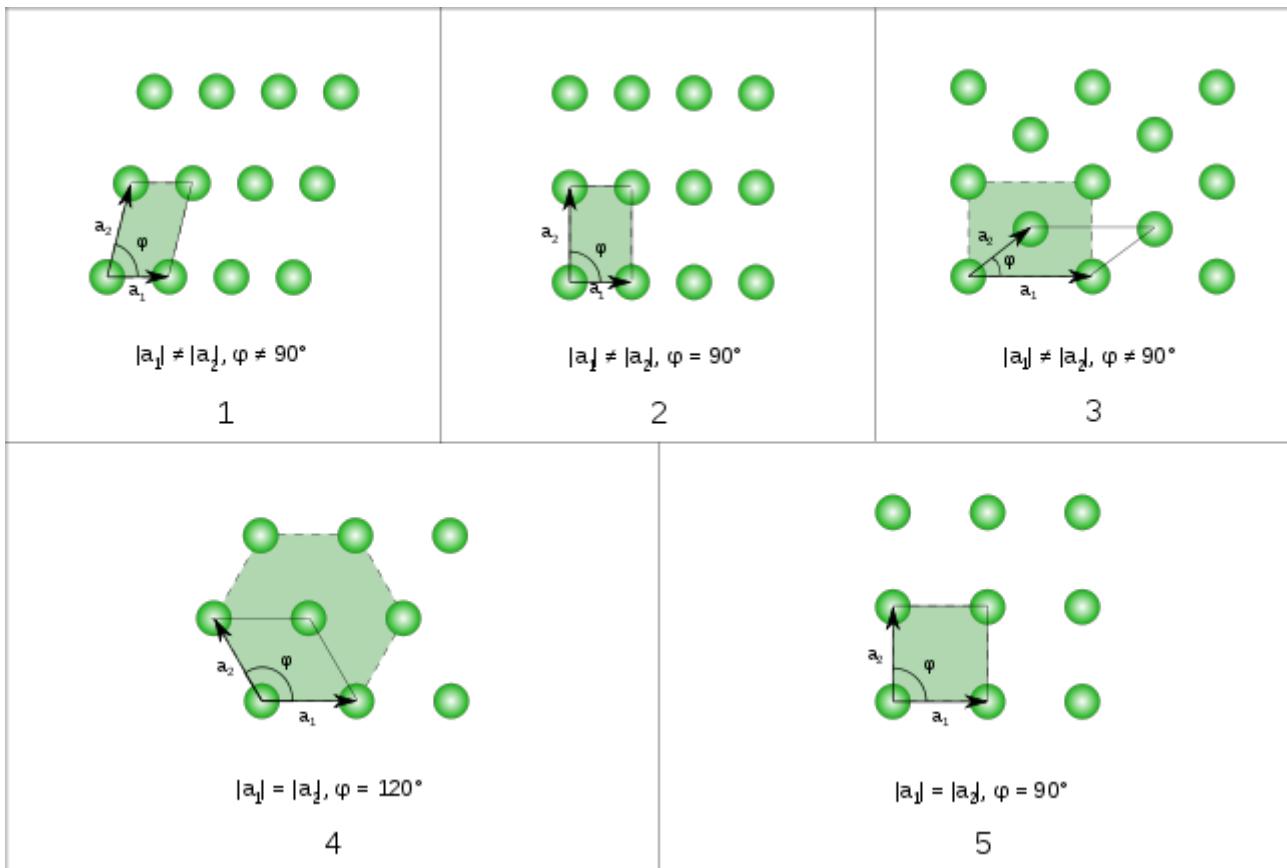
Bloch wave

$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$

A **Bloch wave** or **Bloch state**, named after [Felix Bloch](#), is the [wavefunction](#) of a particle (usually, an [electron](#)) placed in a [periodic potential](#).

$$\epsilon n(\mathbf{k}) = \epsilon n(\mathbf{k} + \mathbf{K}),$$

The five fundamental two-dimensional Bravais lattices



Unit Cell

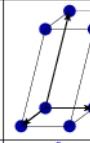
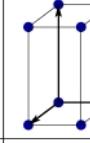
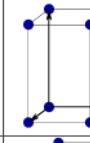
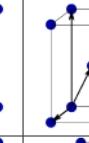
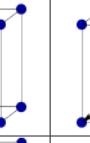
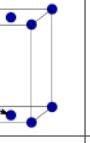
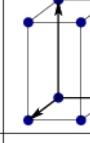
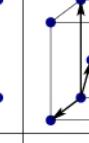
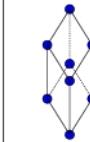
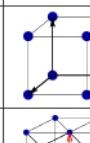
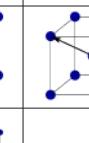
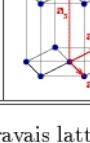
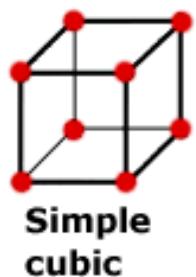
Bravais lattice	Parameters	Simple (P)	Volume centered (I)	Base centered (C)	Face centered (F)
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$				
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^\circ$ $\alpha_{12} \neq 90^\circ$				
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$				
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$				
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^\circ$				
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$				
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^\circ$ $\alpha_{23} = \alpha_{31} = 90^\circ$				

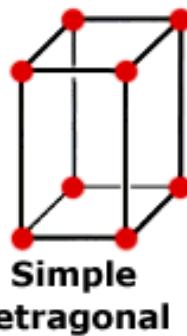
Table 1.1: Bravais lattices in three-dimensions.



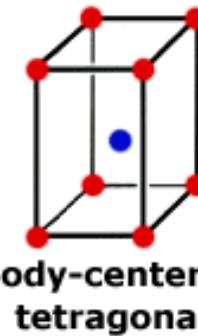
Simple
cubic

Face-centered
cubic

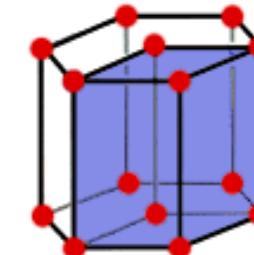
Body-centered
cubic



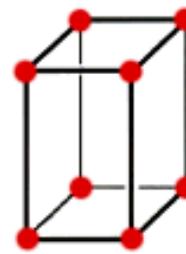
Simple
tetragonal



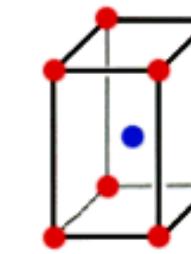
Body-centered
tetragonal



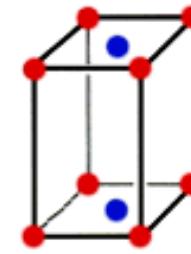
Hexagonal



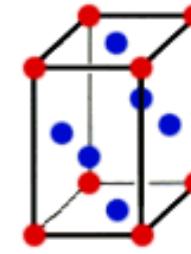
Simple
orthorhombic



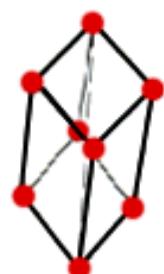
Body-centered
orthorhombic



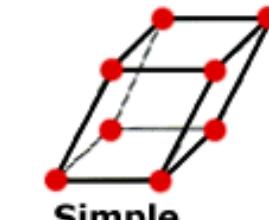
Base-centered
orthorhombic



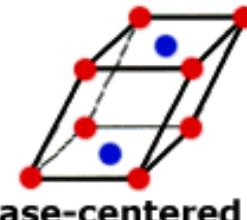
Face-centered
orthorhombic



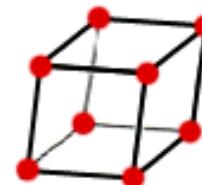
Rhombohedral



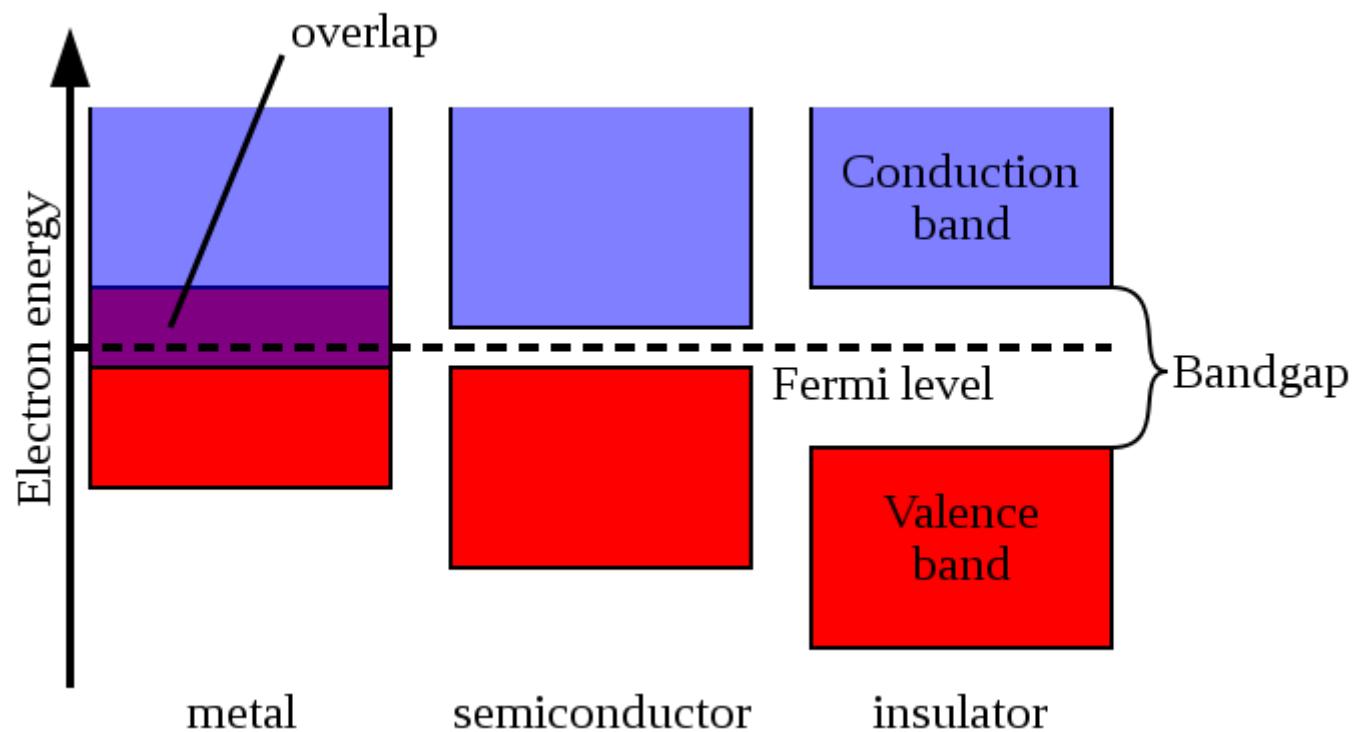
Simple
Monoclinic



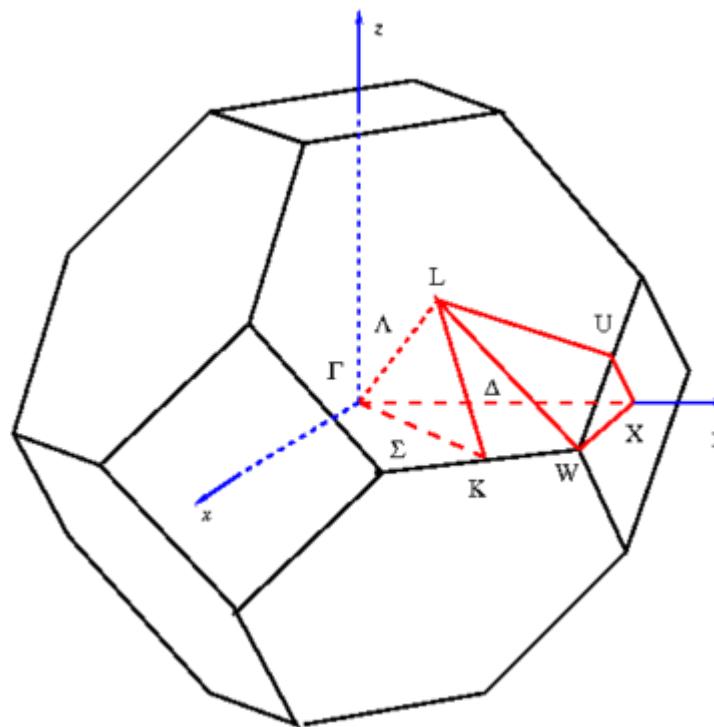
Base-centered
monoclinic



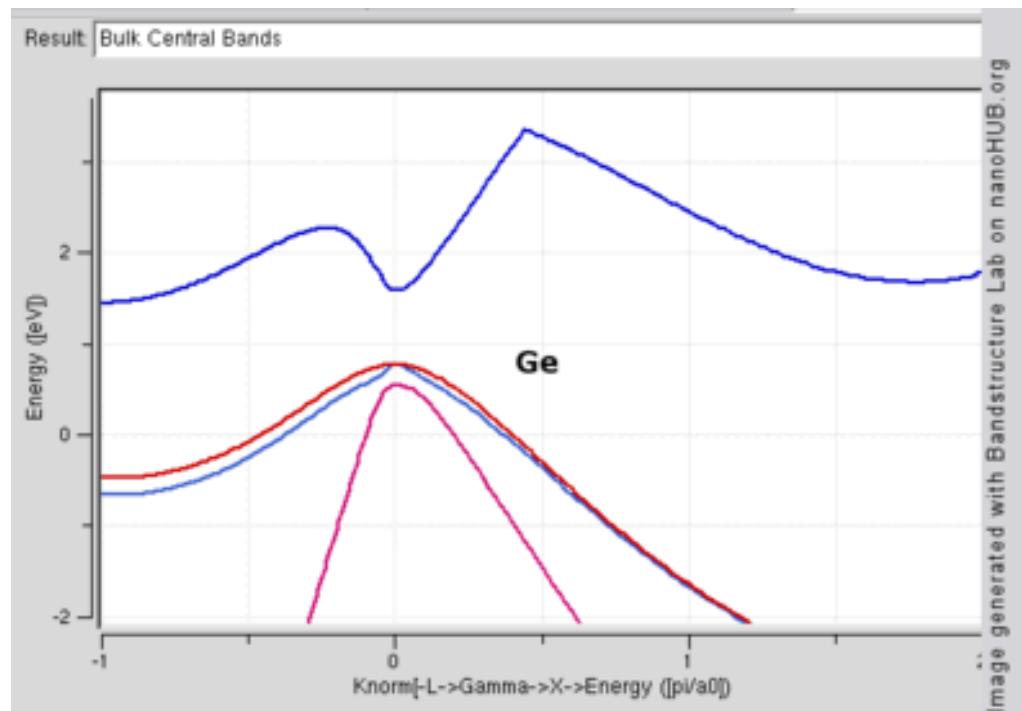
Triclinic



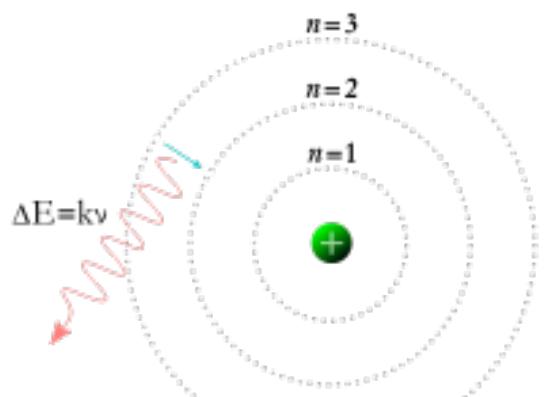
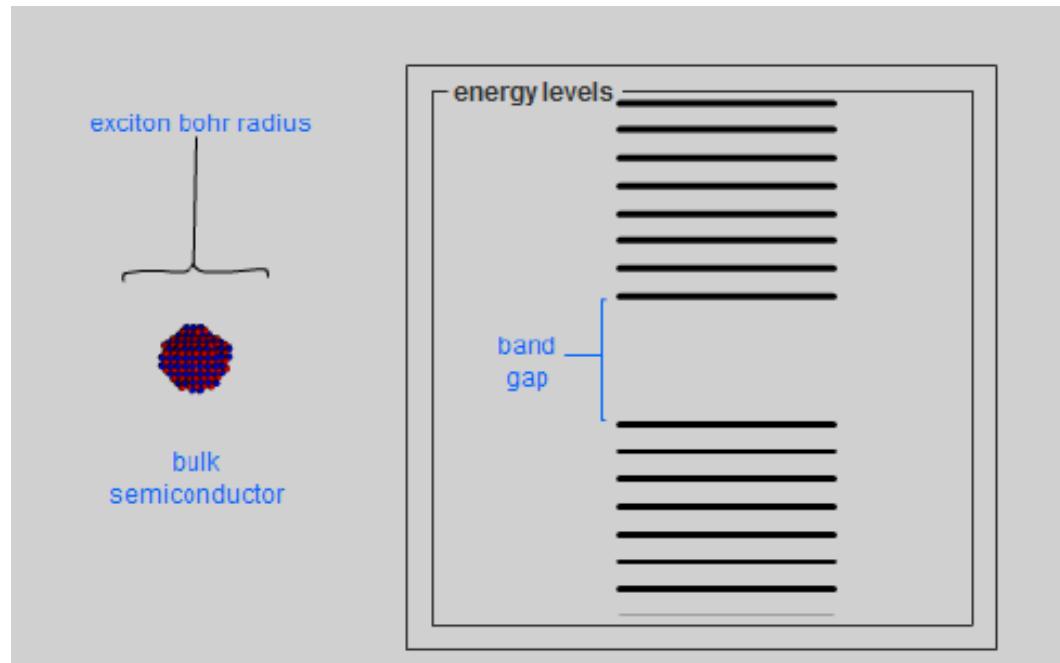
First Brillouin zone of FCC lattice showing symmetry labels



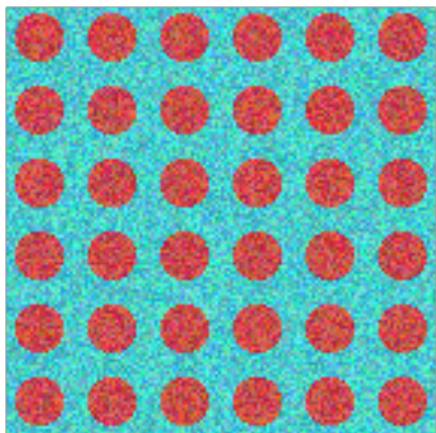
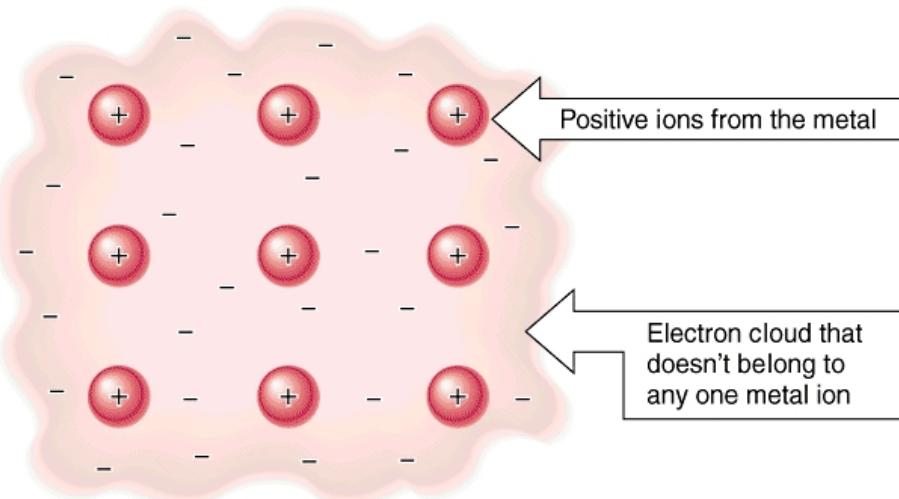
Band Structures



Bohr Exciton Radius



Electron Sea

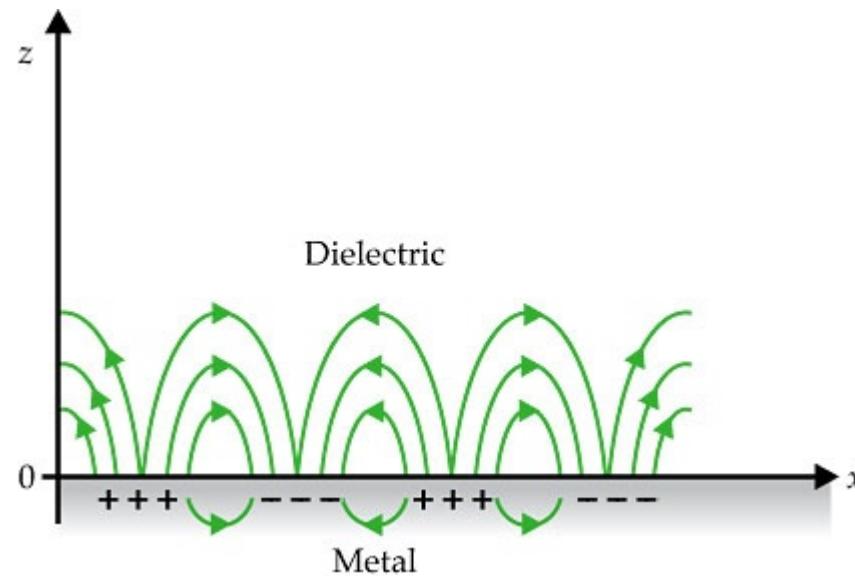


Copyright 1998 by John Wiley and Sons, Inc. All rights reserved.

$$m \frac{d^2 \delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x,$$

$$\omega_p^2 = \frac{n e^2}{\epsilon_0 m},$$

Surface Plasmon



$$\varepsilon_m = 1 - \frac{\omega_p^2}{\omega^2}$$

TiO₂

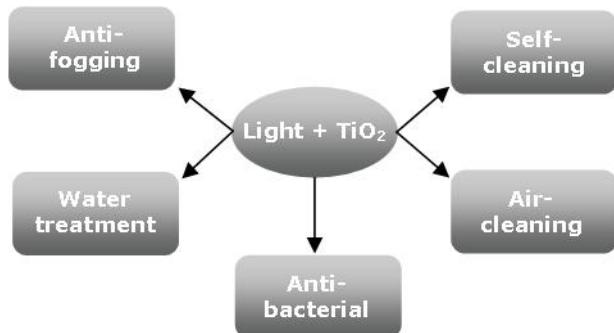
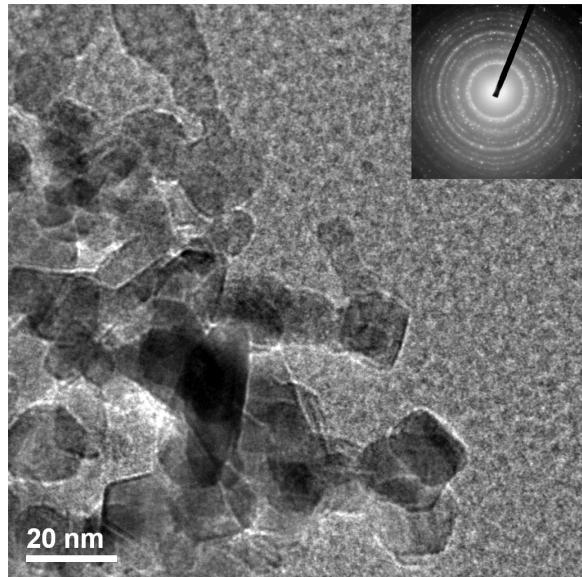
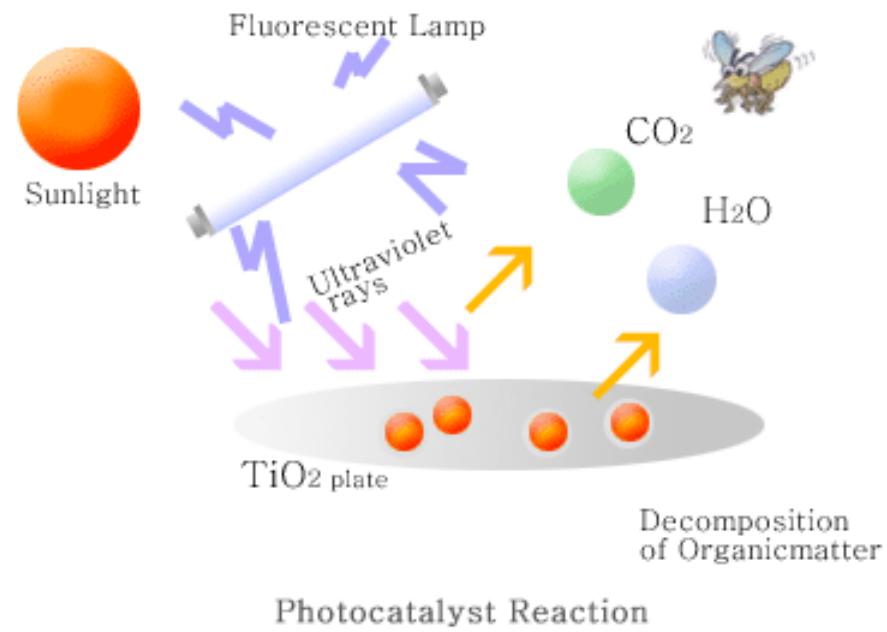


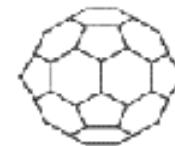
Figure 1. Major areas of activity in titanium dioxide photocatalysis



Carbon

SWNT

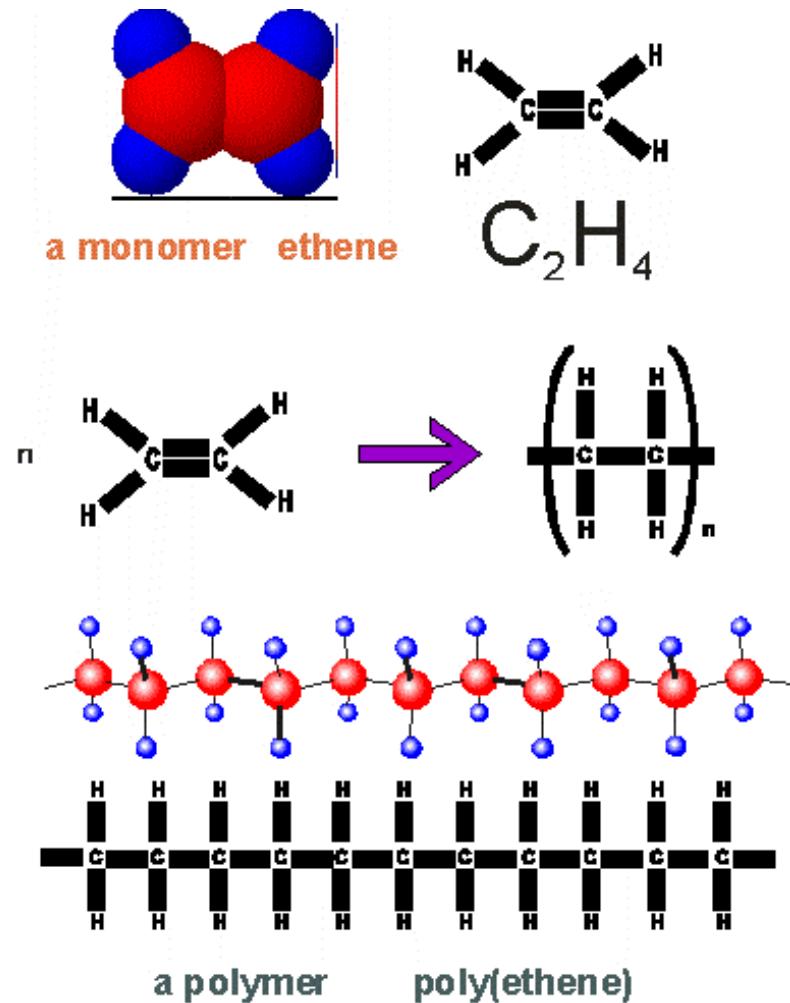
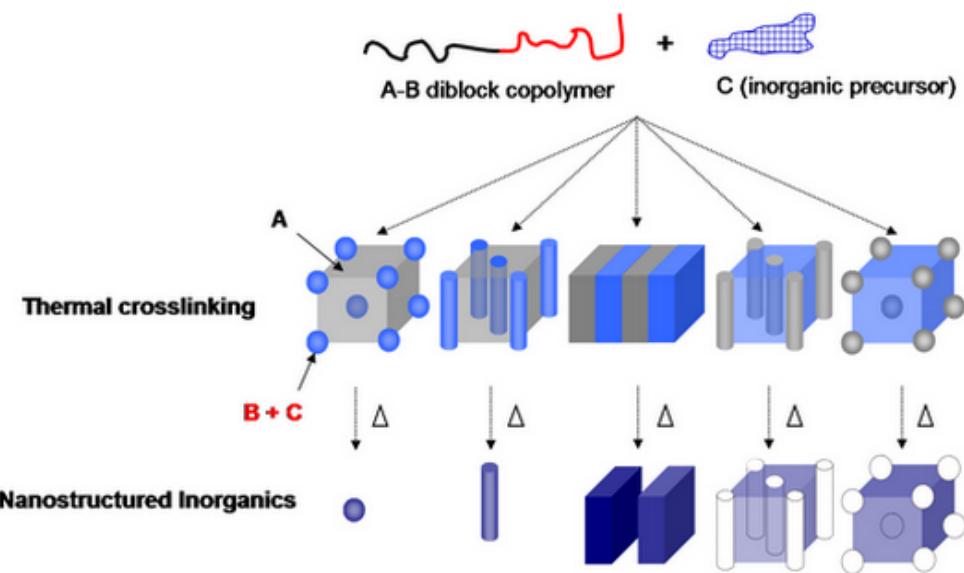
Poly-C₆₀



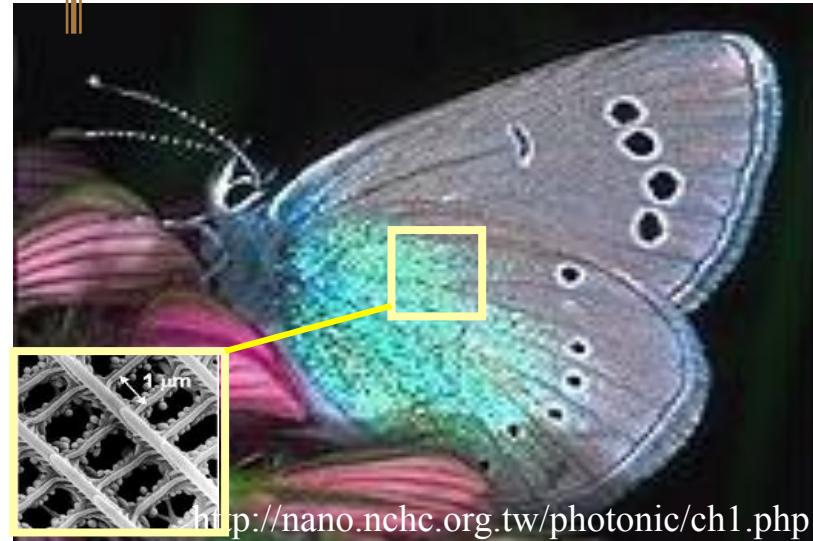
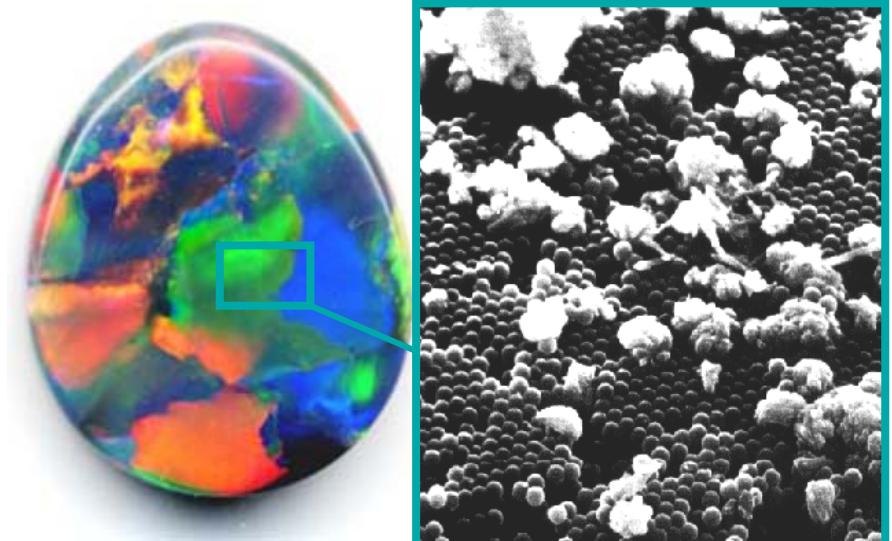
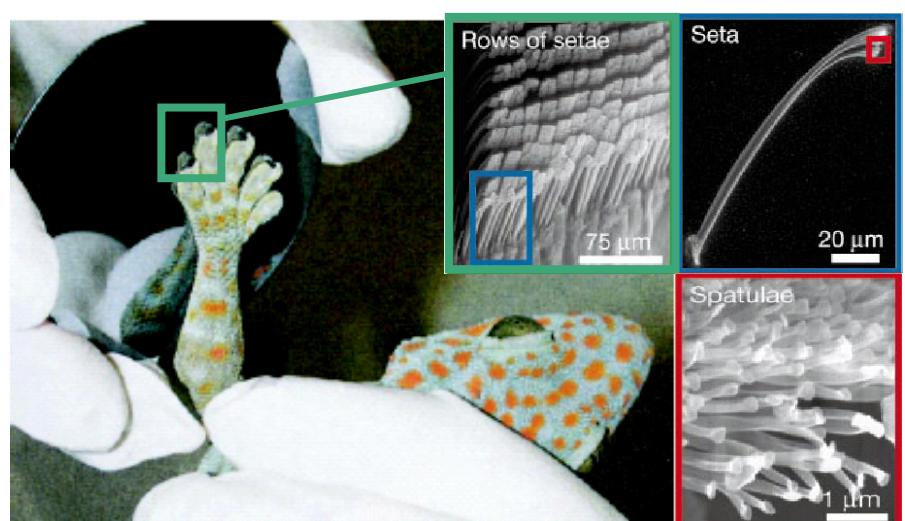
C₆₀

Nanodiamond
~ 2-10 nm

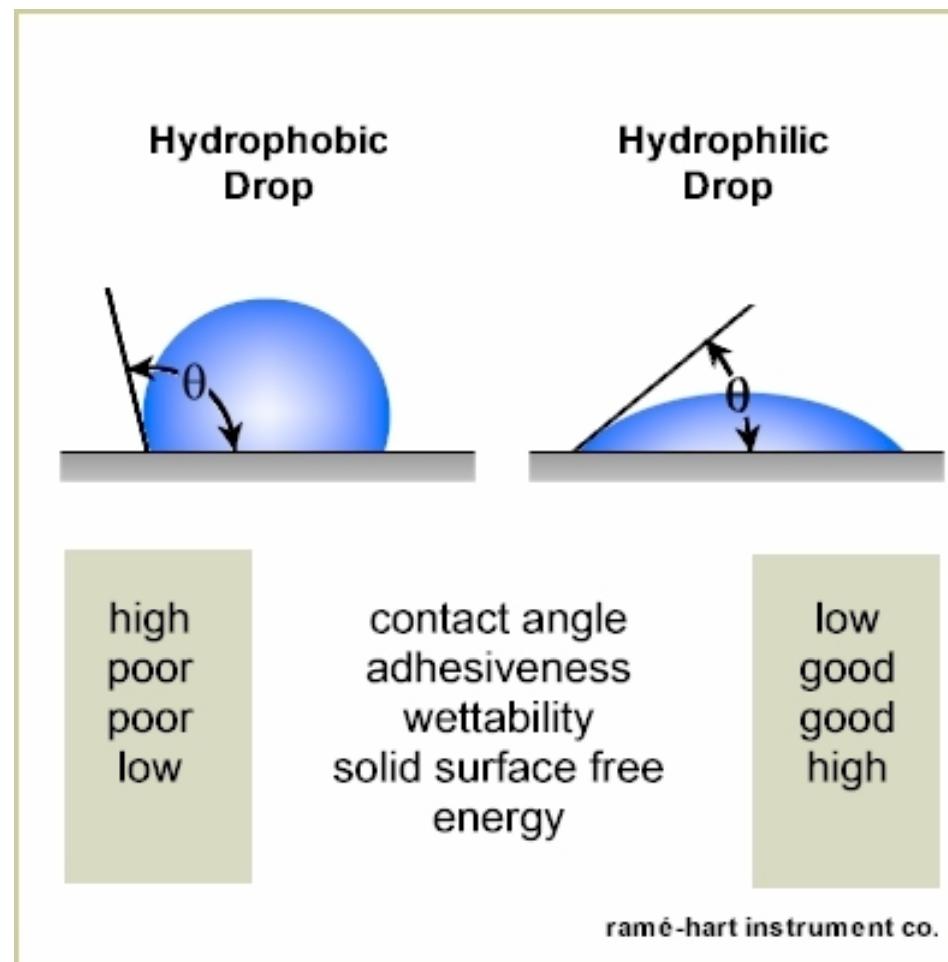
Polymer



Nature Materials

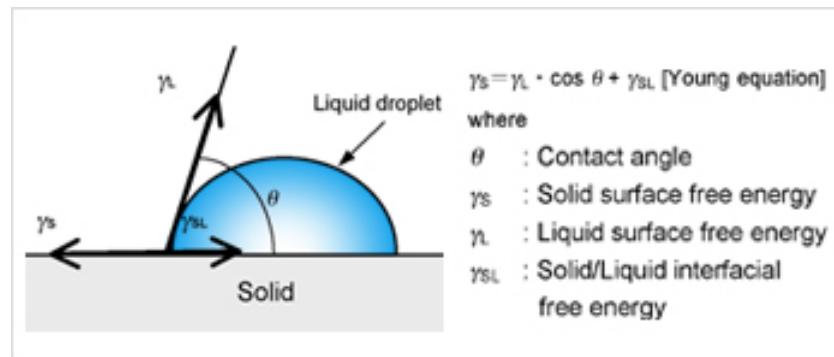


Contact Angle



Young's Equation

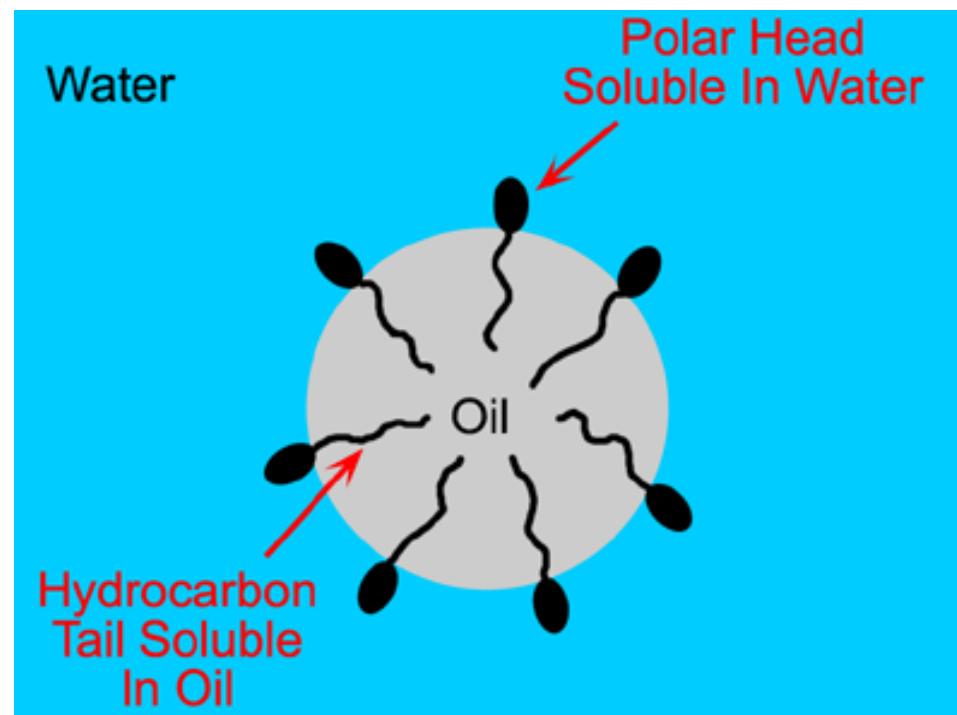
$$\gamma_{SL} + \gamma_{LV} \cos \theta_c = \gamma_{SV}$$



Surface Energy Minimization

- Surfactants
- DLVO
- Polymeric
- Nucleation
- Ostwald Ripening
- Sintering
- Restructure

Surfactant



DLVO Theory

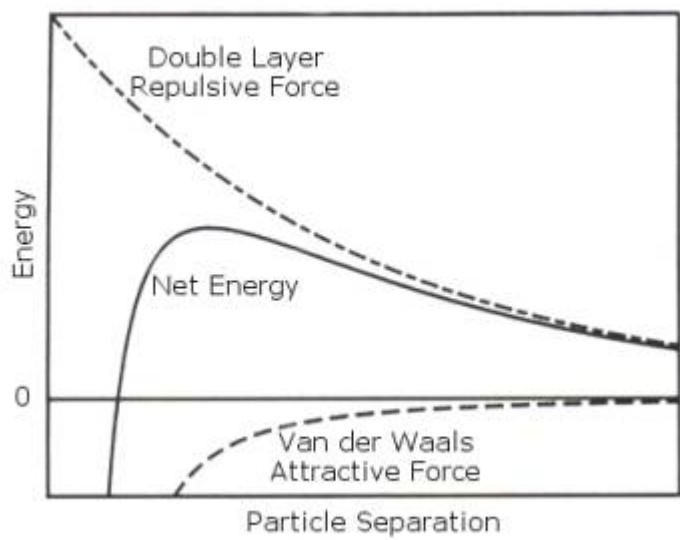
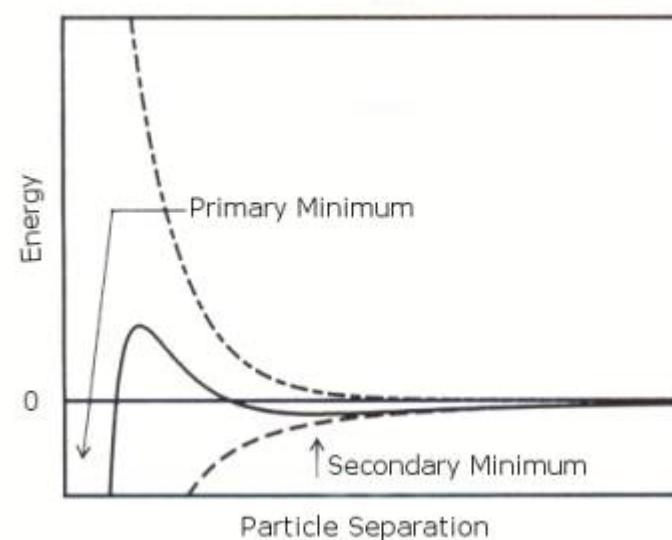
$$V_T = V_A + V_R + V_S$$

$$V_A = -A/(12 \pi D^2)$$

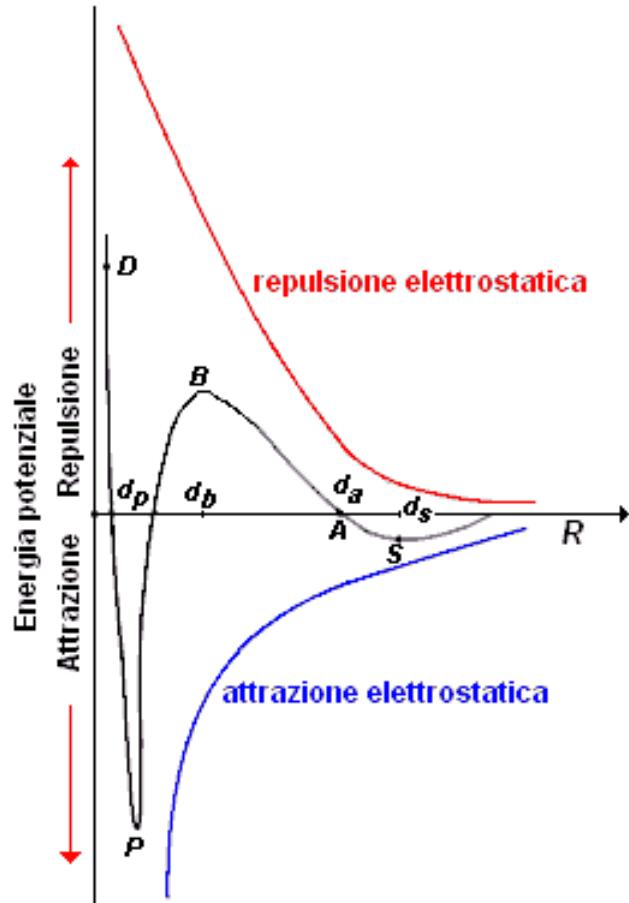
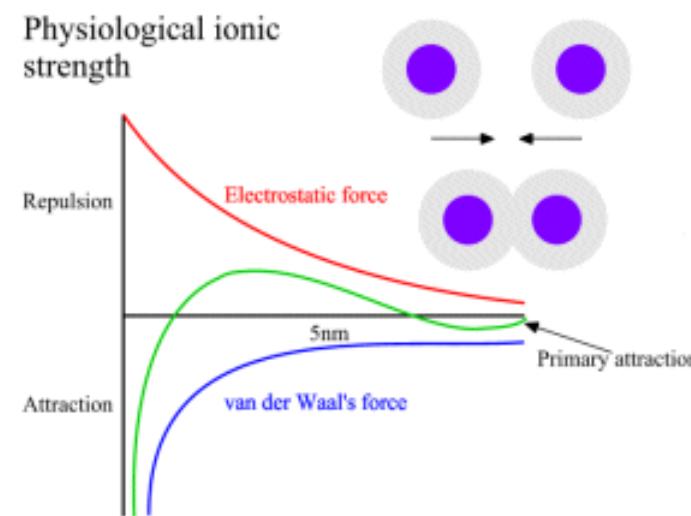
A is the Hamaker constant and D is the particle separation

$$V_R = 2 \pi \epsilon a \xi^2 \exp(-\kappa D)$$

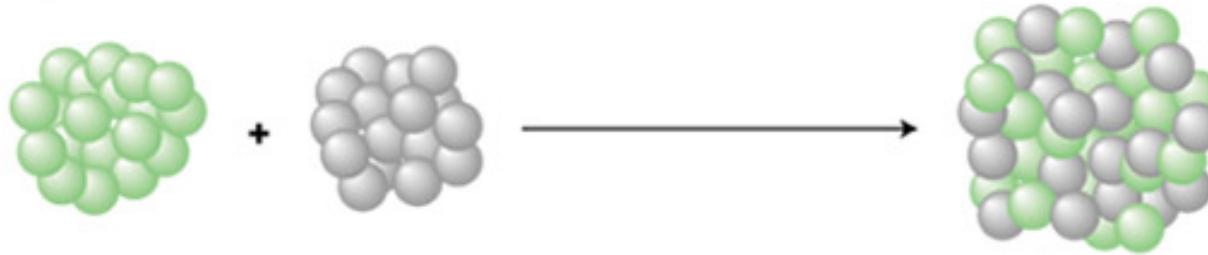
a is the particle radius, π is the solvent permeability,
 κ is a function of the ionic composition and ξ is the zeta potential



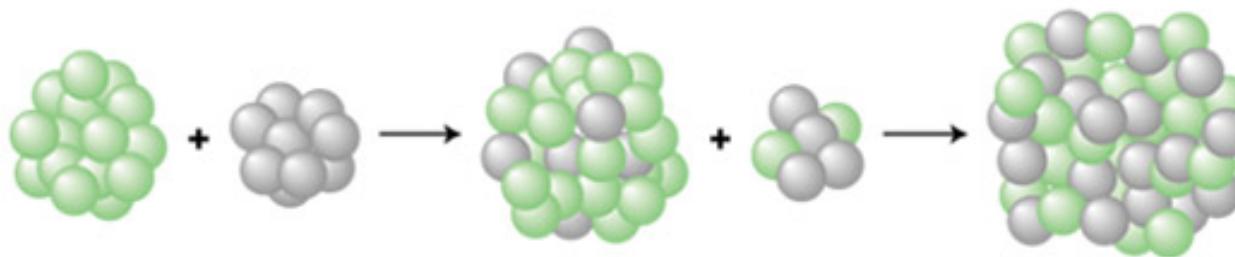
DLVO Theory



a Coalescence



b Ostwald ripening



Two main mechanisms are shown here: **a**, coalescence sintering, and **b**, Ostwald ripening sintering. Coalescence sintering occurs when two clusters touch or collide and merge to form one bigger cluster. In contrast, Ostwald ripening sintering occurs by evaporation of atoms from one cluster, which then transfer to another. This is a dynamic process — both clusters exchange atoms, but the rate of loss from the smaller cluster is higher, because of the lower average coordination of atoms at the surface and their relative ease of removal. Thus big clusters get bigger at the expense of smaller clusters, which shrink and eventually disappear. The latter process is the usual form of sintering for metal clusters on a supported surface that are well spaced apart, although coalescence can occur for a high density of clusters. In general, the presence of the surface results in SMORS (surface-mediated Ostwald ripening sintering) in which material is transferred from one cluster to another by diffusion across the surface, and not through the gas phase.