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Microscopy is the science of investigating small
objects that are too small for the naked eye. The
microscopic study involves revelation of the structure
and morphology of the matter under investigation.

Spectroscopy is the study of the interaction between
matter and radiated energy. With the mechanism of
“resonance”, the characteristic nature of the matter
can be probed.

Both microscopic and spectroscopic techniques
are essential for nanoscience research.



Spectroscopy originates from the dispersion of light through a prism.

Prism

s

As =d (sina — sinp)
= mA

Grating




100 nm

Mechanical resonance

: START

9 170
delay(ms)

< 600

‘STOP ‘STEP
2180 9005

Frequency(Hz)

172.5M

15:10:33PH 21-Nov-2007

PN
oy Ll

¢

—

Amplitude (nm)

— 407 nm

L T . T |
=

w=
th

- (71\'”' only
® with particle at 407 nm
L L

(b)

36 37 38
Frequency (MHz)



Absorption spectra of atomic hydrogen
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Bohr model of hydrogen atom
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Electron Transitions

A downward transition
involves emission of
a photon of energy:
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Given the expression for the energies of the hydrogen electron states:
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Fermi's golden rule is a way to calculate the transition rate
(probability of transition per unit time) between two eigenstates
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Absorption spectra of molecular hydrogen

Optical Oscillator Strength Density(eV™)

11 ¢
10 |
09 F
08 |
07 |
06 |
05 [
04 |
03 [
02 F
01 |
0.0 |
01 E

11.0

- o BYE. Y, 2po | - Experiment[1]

T rrm C'IL, 2pn —Fitted Curve

-------- Residual Curve

T B'S.Y,3po

T DL, 3pn
MM T TT7T7T B”12u+,4p0’
B I D’1nu’4pﬁ'

&
AN A A R I S LT 2 LY, a2 LRITIIEN2
[ G ":=7f?t PR ¥
N Py %,E- ’_jf p: 33 § §
|

’: "-«} B v "': B ) il E 4({;." l:,?-:; H
| L | L | L | . | L |

12.0

130 140 150 160 170 180 19.0
Photon Energy (eV)

Zhi Ping Zhong et al., Phys. Rev. A 60, 236 (1999)



Elactronic

ransimon

{in optical
ar uv)

b

Energy

Vibrational
transition

(in infrared) r|> >

Born-Oppenheimer Approximation

+ + +
i R = i R R;
ljJ molecule( g ’J "-IJ electrons( . lJl'-I'l nuclei( 1)

m, << m,

e

— .
Excited electronic
1 dissociation

Mte
7

Rotational
transition
{in microwave)

Internuclear separation

Potential energy

of form Energy
112
2 kx ? Transition
! energy /
n=4 T
: el /
n=3\ : 1 / En=(n+%)f\m
n=2 .
[
n=1 " /
n=0 E,= 3 fo
Internuclear separation X
4

Cd

x=0 represents the equilibrium
separation between the nuclei.



Various spectroscopic methods

Electrons | EELS

/ \_

‘| Neutrals

Sample

He Scattering

n® Scattering ‘ \\

Photons

FTIR

-

IPS
APS

«—— | lOons

U 1SS
RBS
SIMS

XPS
UPS

Raman



Electronic Spectroscopy

1. Photons in, photons out — PL
2. Photons in, electrons out — UPS, XPS
3. Electrons in, electrons out — EELS
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absorption coefficient [10* cm™")

GaAs
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Binding energy and effective radius for the exciton
E. = (m*/m)(e/ey)? (13.6 eV)
agq = (eleg)(m*/m )" (0.0529 nm)

For GaAs, /ey~ 13.2 and m*~ 0.067m,

then E, ~5 meV and a,s ~ 10 nm



One dimensional size effect
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Au nanoparticle as an example

+«— 10nm ——»

Er = (h%/2m) (3n2n)23
9(Ef) = (3/2) (n/Eg)

5 = 2/[g(E)V] = (4/3) (E¢/N)

Number of valence electrons (N) contained
in the particles is roughly 40,000. Assume
the Fermi energy (Eg) is about 7 eV for Au,

then
0~0.22meV~25K
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Ultraviolet photoemission
spectra of ionized copper
clusters Cu,,~— ranging in
size from N of 1 to 410
show the energy
distribution versus binding
energy of photoemitted
electrons. These
photoemission patterns
show the evolution of the
3d band of Cu as a function
of cluster size. As the
cluster size increases, the
electron affinity approaches
the value of the bulk metal
work function. (Adapted
from ref. 10.) Figure 5



Semiconductor quantum dots

(Reproduced from Quantum Dot Co.)



Optical properties of nanoparticles
(in the visible light range)

(1) Blue shift:
Due mainly to the energy-gap widening
because of the size effect.

O O
. g g g 8 (2) Red shift:
500006 o Bond shortening resulted from surface
tension causes more overlap between
Cee®ee ® neighboring electron wavefunctions.
©O000O0 O Valence bands will be broadened and the
000 O gap becomes narrower.
O O L0 @
O (3) Enhanced exciton absorption:
Due mainly to the increased probability
Excitons of exciton formation because of the

confining effect.



Optical properties
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Figure 4.20. Opfical absorption spectrum of CdSe for two nanoparticles having sizes 20 A and

40 A, respectively. [Adapted from D. M. Mittieman, Phys. Fev. B49, 14435 (1994).]



Scanning Tunneling Spectroscopy

1. Barrier Height Imaging
Up to now homogeneous surfaces were considered. If there is an

inhomogeneous compound in the surface the work function will be
inhomogeneous as well. This alters the local barrier height. Differentiation

of tunneling current yields

d(nD) =

ds

Thus the work function can directly be g—i ™~
measured by varying the tip-sample distance,

which can be done by modulating the current
with the feedback turned on.
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STM Images of Si(111)

Filled-state image

Empty-state image



Electronic Structures at
Surfaces

Empty-State Imaging

S Er (2)

Tip Sample

Tunneling Filled-State Imaging

EF(2)

Tip Sample



o I/V
2. dl/dV imaging

If the matrix element and the density of
states of the tip is nearly constant, the
tunneling current can be estimated to

[ ¢ _[psa(EF—eV+8)d8 ' |
0

Differentiation yields the density of state: di/dv EFT‘EFS

. 0 E-Ers
d_v <P, (EF — eV) Density of state (DOS)




The mapping of surface density of states can be
deduced by

* Modulation of the bias voltage (dl/dV imaging):

The tip is scanned in the constant current mode to
give a constant distance to the sample. A dither
voltage of ~1k Hz is added to the bias voltage while
the feedback loop remains active. A lock-in technique
IS employed to obtain the current change at the dither
frequency.

« Current-lmaging Tunneling Spectroscopy (CITS):
The tip is scanned in the constant current mode to
give a constant distance to the sample. At each point
the feedback loop is disabled and a current-voltage
curve (I-V curve) is recorded.



TUNNELING CONDUCTANCE (I/V)

INTENSITY

STS of Si(111)-(7x7)
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STS of Si(111)-(7x7)
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1. Science 234, 304-309 (1986).
2. Phys. Rev. Lett. 56, 1972-1975 (1986).



Density of states of various dimensions
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Quantum size effect

A = de Broglie wavelength of electron
a = thickness of metal film
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Spectra for Pb Films
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Scanning Tunneling Spectroscopy (STS)

(feedback off) (feedback on)
|-V spectrum Z-\/ spectrum
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Transmission Resonance in Ag Films on Si(111)

Ag film on Si(111) at RT
o

Sample bias (V)

Work function of Ag/Si(111) = 4.41 eV



Quantum Size Effect above Vacuum Level
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Summary

e Quantum well states are measured with
STS in the Pb films of varied thickness on
the Si(111) surface.

* Quantum phenomenon of the transmission
resonance can be observed with STS in Ag
films on the Si(111) surface.

e Positions of the transmission resonance
measured with STS can serve as finger prints for
the Ag films of varied thickness.



Work function measurements for
thin films

work function measurement for thin film Broad beam technique
using photo-emission spectroscopy

[(a) Quantum Well States for Ag on Fe(100) j require |ayer by |ayer grOWth
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(2002) 233403.
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Comparison with PES measurement

Photoemission (-0.33 eV) Gundlach oscillation (-0.3 eV)
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Summary

* A general phenomenon of the constant energy shift
is observed in high order Gundlach oscillation.

e The work function of a thin metal film can be measured
with the constant energy shift.

* The precision of the measurement can be better than
0.02 eV, comparable to the photoemission results.



Vibrational Spectroscopy

1. Photons in, photons out — IR, Raman
2. Electrons in, electrons out — EELS
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Figure 8.5. FTIR spectra of boron nitride nanopowder surfaces after activation at 875K (tracing
a), after subsequent deuteration (tracing b), and (c) difference spectrum of a subtracted from b
(tracing c). [From M.-I. Baraton and L. Merhari, P. Quintard, V. Lorezenvilli, Langmuir, 9, 1486
(1993).]



O O O

OO O0OO0O0
ONONONCHONONG)
OO0OO0O0OO0O0O0O0

Optical properties of nanoparticles
(in the infrared range)
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(1) Broad-band absorption:
Due mainly to the increased
normal modes at the surface.

(2) Blue shift:
Due mainly to the bond shortening
resulted from surface tension.



The Theory of Raman Spectroscopy

Mid IR  Stokes Raman Rayleigh Anti-Stokes Raman Fluorescence
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Figure 8.19. Raman spectra of (a) crystailine graphites and (b) noncrystalline, mainly graphitic,
carbons. The D band appears near 1355cm™' and the G band, near 1580¢cm™". [From
D. S. Knight and W. B. White, J. Mater, Sci. 4, 385 (1989).]



Inelastic Tunneling

Elastic vs. Inelastic Tunneling
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Single Molecule Vibrational Spectroscopy and Microscopy

D
Side %

Top

B.C. Stipe, M.A. Rezaei, and W. Ho,
Science 280, 1732-1735 (1998).




Atomic Scale Coupling of Photons to Single-Molecule Junctions
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Quantum corral

D.M. Eigler, IBM, Amaden



Artificial atom
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Mass Analyzer

Magnatic Field

qV = %2 mv?

F =qvB = mvé/r

m/q = V2 B2r2/V

R lan

Collector
o

Source

Figure 3.8. Sketch of a mass spectrometer utifizing a 90° magnetic field mass analyzer,
showing details of the ion source: A—accelerator o extractor plate, E—electron trap,
i—filament, —onization chamber, L—focusing lenses, R—vepeller, 5—slits. The magnetic
field of the mass analyzer is perpendicular to the plane of the page.
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Figure 4.5. A comparison of the energy levels of the hydrogen atom and those of the jellium
model of a cluster. The electronic magic numbers of the atoms are 2, 10, 18, and 36 for He, Na,
Ar, and Kr, respectively (the Kr energy levels are not shown on the figure) and 2, 18, and 40 for
the clusters. [Adapted from B. K. Rao et al., J. Cluster Sci. 10, 477 (1599).)
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Shell structure: Two views. a: Atomic ionization
potentials drop abruptly from above 10 eV following
the shell closings for the noble gases (He, Ne, Ar
and so on). For semiconductors (labeled in blue) the
ionization potential is between 8 and 10 eV, while
for conductors (red) it is less than 8 eV. It is clear
that bulk properties follow from the natures of the
corresponding atoms. (Adapted from A. Holden,
The Nature of Solids, © Columbia U. P., New York,
1965. Reprinted by permission.) b: lonization
potentials for clusters of 3 to 100 potassium atoms
show behavior analogous to that seen for atoms.
The cluster ionization potential drops abruptly
following spherical shell closings at N = 8, 20,
40.... Features at N = 26 and 30 represent
spheroidal subshell closings. The work function for
bulk potassium metal is 2.4 eV. Figure 3
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Reactivity of nanoclusters
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Figure 4.13. Mass spectrum of Al nancparticles before (top) and after (bottom) exposure to
oxygen gas. [Adapted from R. E. Leuchiner et al., J. Chem. Phys., 91, 2753 (1988)]



Magic clusters
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Mackay icosahedra

P=1 P=2 P=3
20 fee(111) faces
Shell model
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