Scanning Tunneling Microscopy
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Scanning Tunneling Microscopy (STM)
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Principle of scanning tunneling microscopy
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Scanning Tunneling Spectroscopy (STS)
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Structure of STM
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Motor for coarse approach
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Electronic Control
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The contrast of STM image is the variation of voltage applied to z-electrode of tube scanner.



Vibration Isolation

The tip-sample distance must be kept constant within 0.01A to get good
atomic resolution. Therefore it is absolutely necessary to reduce inner
vibrations and to isolate the system from external vibrations.
Environmental vibrations are caused by:
e Vibration of the building 15 - 20 Hz

e Running people 2 -4 Hz

e \/acuum pumps

e Sound
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Vibration damping can be done by
e Suspension with springs (including additional eddy current dampers)
e Pneumatic systems magnets and copper plates




Pneumatic systems




Tip
The tip is the trickiest part in the STM experiment. It needs a small
curvature to resolve coarse structures. For atomic resolution a minitip with
a one atomic end is necessary. Tips typically are made out of tungsten,

platinum or a Pt-Ir wire.
A sharp tip can be produced by:

e Cutting and grinding

e Electrochemical etching W
Most often the tip is covered with an oxide layer and [~ Y — ot
contaminations from the etchant and is also not ~ |

. . LY I L W E
sharp enough. Thus other treatments to the tip, like NaOH

annealing or field evaporation are necessary.
It is also possible to do tip-sharpening during tunneling.

e Sudden rise of the bias voltage to about -7V (at the sample) for 2-4 scan
lines.
By this treatment some W atoms may walk to the tip apex due to the
nonuniform electric field and form a nanotip.

e Controlled collision on Si surface.
The tip may pick up a Si-cluster which forms a monoatomic apex with a p_like
dangling bond.



Environment for STM : Air, Liquid, Ultra high vacuum (UHV)

Working temperature of STM : RT, HT (high to 1200 K), LT (low to 0.3 K)

Atomic scale resolution

Pt(100)-R0.7°

For obtaining order arrangement of atom, UHV is necessary.



UHV chamber UHV RT STM

Defects of UHV RT STM:
e Thermal effect reduces the energy
resolution in scanning tunneling spectroscopy
e Physical phenomena appearing at low
temperature cannot be observed.
e Thermal drift (relative movement of tip and sample)

1

Development of LT-STM



Improvement of Energy resolution by reducing temperature
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Atomic Manipulation

Low temperature can reduce the relative movement between tip
and sample, facilitating atomic manipulation.



Home made LT UHV STM

UHV-compatible
Homemade STM LHe Cryostat

Lowest temperature ~ 5 K



Applications of scanning tunneling microscopy

Surface reconstruction

FCC(100) e




22xV3 Reconstruction of Au(111) surface

(a)

=
"y

| [TTo—
Z{ ]

gt e g i - I-

123-EEE-T-SE'I'D“'I?'GI-I'-FMT-’HHE'H?I

T ol o ol e O L} i) y O 0 O € L L
'*'i'i'i‘*'lt'i'lr'-l'l‘fll* 'l" 'iiii‘ri‘

= e ¥ r R wom W
Il!‘.!'!.!.!;!.!l*l*.“l-.li' - -. 'I‘_I ' ".‘.‘.- !! -*‘
4‘*;# ey
:rrﬂ'r
AR R AR R
N
0000

'I"'I-"I" 0 g .

III‘IIIIII-I.IIIII-I.-I o L W

ran e RN H"‘“ 88 .*!'*!.
*'H'Ll:i -l-Jl-

-*I_‘_‘I'G'I'I'_I Ll -
n I l"l i L] i l I I |
ill‘-illll--"- -ﬁ-i‘- I_-l-l_‘i'-_*_'*-

'_ '*“ L, " o . i o i s e i
'"!.-'!'!!!.-."'-I'-.'iji‘h- " '

FCC HCP FCC
(ABC) (ABA)



Reconstruction on Pt(100)

Close packed lattice (0.965 A) / square lattice (A)
A=lattice constant



Surface Diffusion

,“ Potential M

it JalalP e
D: diffusion coefficient, /\Wﬂdifﬂ
<x%>: mean square displacement of atom O O O O

o=1 for one dimensional diffusion

Einstein Equation : D=<x%>/2ay

a=2 for two dimensional diffusion (<x?>+ <y?>)

v: time interval D=d?I'/2
<x%> can be related to the number of jumps N ['=v, exp(-E,/kT)
According to random walk theory <x?>=Nd? v, is vibration frequency,

E, is activation energy
D=D,exp(-E4/kT)=<x>>/20y
D, is the diffusivity=v,d?/2

d: mean jump distance

I'" Is defined as the number of atom
jumps per time interval =N/y

? Arrhenius plot
In (<x2>/2ay)=In(D,)-E/kT In(<x*>/20y) rrhenius plo

1/T



Surface Diffusion
Site Hopping of Single Chemisorbed O, Molecule on Si(111)7x7
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Phys. Rev. Lett. 78, 4797 (1997)



Nucleation and Epitaxial Growth

Fe/Fe(100)

FIG. 1. STM images, 100X 100 nm?, of single-layer Fe is-
lands (white) on the Fe(001) surface (black). Sample tempera-
tures during growth are (a) 20°C, (b) 108°C, (c) 163°C, (d)
256°C, (e) 301°C, and (f) 356°C. Fe was deposited for a fixed
time for all measurements with a flux of 1.4+0.3x10"
atomscm s, yielding a coverage of 0.07+0.016 ML (1
ML=1.214X 10" atoms cm™2).

Phys. Rev. B 49, 8522 (1994)

N ~n(©)(r /v¥exp[Y(E;+E, /i) /kyT],

E4 : activation energy
E;: binding energy of critical size i
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Critical size i
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i=0 =1 1=2 1=3
monomer dimer trimer tetramer
Scaling theory

Ns = 0S-4f, (s/S)
NS : island density at size s
O : coverage

S : average island size
Ns S2/ 6 =1, (s/S)

f. (s/S) is an universal

Scaling function at critical
size
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Epitaxial Growth Mode
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Volmer-Weber Frank-van-der-Merwe Stranski-Krastonov
(VW) (FM) (SK)

v, : surface free energy of substrate
v, : surface free energy of adsorbate

v* :interfacial free energy
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The Growth of 2D Pb islands on Si(111)7x7 surfaces at Low Temperature

T=208K,0=3.2 ML Pb

Topography 3D image of topography

2 ML

wetting layer .

100 nm
Phys. Rev. Lett. 86, 5116 (2001)
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Quantum Size Effect-Driven Epitaxial Growth

A = de Broglie wavelength of electron

L>> A L= A
a6 I . M 0
Substrate Substrate
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Phys. Rev. Lett. 80, 5381 (1998)



207K

254K

_ _ E,: the activation for diffusion
N ~exp[(IE4+E)/(1+2)kgT]  E, : the binding energy for the critical

Phys. Rev. B 65, 245401 (2002) SIZE |



Arrhenius Plot : Island density vs. 1/Temperature
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e The nucleation and the quantum size effect are two independent factors
in the formation of an island, the former results in the creation of an island
and the latter determines the thickness of the created island.
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2D Growth driven by the quantum size effect
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2.3 ML, 170K
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Phys. Rev. B 68, 033405 (2003)
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Self-Assembly

Ni cluster on reconstructed Au(111)

k

() 5

(a)

SV

(©  200A @ ¥R
[ X

| (121] [101]
a4

Phys. Rev. Lett. 66, 1721 (1991).




Self-organized growth of nanostructure arrays on strain-relief patterns

Fe islands/Cu/Pt(111)
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Ce atomic superlattice on Ag(111) at 3.9 K

Lattice constant=32 A

Ce: Cerium (§), ¥ T }&E, |51 F7:58

Ce superlattice is created by standing
wave formed around Ce atoms.

Phys. Rev. Lett. 92, 016101 (2004).
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Quantum Confinement Effect
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Visualization of quantum confinement effect with STM & STS

Quantum corral by Eigler et al.
in IBM
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Application of standing-wave state in STM gap on work function measurement of
thin metallic film
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Photoemission (-0.33 eV) Standing-wave states (-0.3 eV)
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Influence of image potential effect on empty quantum well states
Pb |sIand/Cu(111) - N
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Manifestation of image potential effect through Empty Quantum Well States
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E,=4.6 eV above E,

For simple square well:

2k(N+1)d=2nm h2k2/2m*:E+EF
Including phase ¢, contributed from image potential
X m*=1.14 m,

2k(N+1)d+dg=2nm
de/TT=[3.4 eV/(E~E)]""2-1

E: energy of quantum well state

E,: vacuum level



Pb band structure along I'-L direction:
detect with quantum-well states
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