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¥ Mechanotransduction and the Study of Cellular Forces

« Mechanical forces play a critical role in nearly all
aspects of cell biology, from cell migration to
morphogenesis to cell proliferation.

* hese forces are ubiquitous to the interactions between
cells and their substrates (such as shear stress in the
vascular tree).

* Even in the absence of applied external forces, cells
themselves apply forces against their surroundings by
actively contracting their actin-myosin cytoskeletal
networks.




Nature Protocol

PROTOCOL

Assaying stem cell mechanobiology on
microfabricated elastomeric substrates with
geometrically modulated rigidity

Michael T Yang'', Banping Fa' ', Yaag Kao Wang /, Ravi A Desai’ & Christopher S Chen

We deacride the sre of 3 microfabricated coll cultare sobatrate, comtisting of & eniomm arvay of clowely spaced, vertical, slastomeric
micropests, e sudy Whe effncts of wuditrane rigidity oo cell ferctien Elvtomeric micropest sebstyates are sicremaided fram
silicen maiters comprised of micvopests of 4ifferest heights 1o yield sabrtrates of dfferent rigidities. T™he 1igs of the elastomeri
microposts are fanctionalized with extracelislar matrix through micracontact printing 1o promate coll adhesion. These sabatrates,
herefore. parient the came L0oagraphical cuet 1o adherert (ols whie wirying sebstrate rigidity anly vasgh manipulatise

of mioropast height, This protacel Cesirides bow 1o Tadricate the sllicen microport armay masterns (~2 weeks 10 complete) and
clavtomeric substentes (3 ), 22 well 21 bow to perform coll cultuse experiments (1-14 &), immeroflucrescence imaging (2 4)
saction force analysis (2 ) and stem cell $ifTerentianion ascays (1 €) on these sudstrates in arfer 1o esaming the #fWect of
sabstrate rigidity on stam coll merphalagy traction fame gereration focal adhesiaon arganiration and dMeseatiation
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PDMS Micro-Post Array

» Characterization of micropost array.
« Deformation vs. Dimensions.
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PDMS Micro-Post Array

. Replica molding of a micropost array master.
» Surface treatment and pattern transfer.

Cells on Microposts

» Force measurement and beyond.
a b




Introduction — Flow Cytometer

» Rapid analysis of biological samples
— Disease diagnosis and monitoring
— Cell biology
— Toxicology
— Environmental monitoring

Introduction — Flow Cytometer

 Basic Operation of Flow Cytometer
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PDMS Microfluidic Channel
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Experimental Results (lI)
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Simple 3D Hydrodynamic Focusing
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Numerical Simulation

« 3D computational fluidic dynamics (CFD) model.
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Confocal Imaging

» Fluorescein and Confocal Microscopy Z-Stack
Imaging.
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Bead Characterization
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Air Sheath Flow Cytometry

* Minimize instrument footprint
» Less contamination concern
* Promising for Point-of-Care
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Hydrodynamic Focusing

: « Stably focused aqueous sample core
— flow along the microfluidic channel of
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Braille Flow Cytometer

Efficient Sample Loading without  *Ria

i damaging cells
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= Sample Loading & Hydrodynamic Focusing
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Cell Viability after Loading

+ C2C12 Myoblast Cells Stained Using LIVE/DEAD Viability/
Cytotoxicity Kit
— Calcein AM for LIVE Cell (ex/em 494 nm/517 nm)
— Ethidium homodimer-1 (EthD-1) for DEAD Cell (ex/em 528 nm/617 nm)
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Cell Cycle Analysis

. A
* Human promyelocytic = a0
leukemic (HL60) cells ‘;-‘“
— Hypotonic DNA Stain: i f
- Sodium citrate ? .

« Triton X-100 :

* Propidium iodide
* Ribonuclease A
« Distilled Water
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Single Embryoid Body Cell Counting

» ES Cell: Hanging drop cell culture to form spheroid
» Dissociated in Trypsin mixed with Syto 9 (40 pl)
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