Synthesis of Nanoparticles
and Surface Modifications




Self-Assembly

o Static assembly
 Dynamic assembly

— RT =8.314 J/mol x 300 = 2.4 kJd/mol

 Driving forces
— Chemisorption
— Surface effect
— Hydrophobic-hydrophilic
— Intermolecular forces
— Capillary force
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Langmuir-Blodgett Films




Surface Pressure (T, mN/m)
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Self-Assemble Monolayer
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Figure 7. Schematic illustration of some of the intrinsic
and extrinsic defects found in SAMs formed on poly-
crystalline substrates. The dark line at the metal—sulfur
interface is a visual guide for the reader and indicates the
changing topography of the substrate itself.
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@ (a) Insertion of a functional adserbate at a defect site in a preformed SAM. (b) Transformation of a SAM with exposed functional

groups (circles) by either chemical reaction or adsorption of another material.
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Figure 21. Schematic illustrations of (a) a mixed SAM
and (b) a patterned SAM. Both types are used for applica-
tions in biology and biochemistry.
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Figure 22, Schematic dingram illustrating the effocts that
large terminal groups have on the packing density and
organization of SAMz. (a) Small terminal groups such as
=(Hj, —=CN, ete., do not distort the secondary organization
of the organic layer and have no effect on the sulfur
arrangement. (b) Slightly larger groups (like the branched
amide shown here) begin to distort the organization of the
organic layer, but the strongly favorable energetics of
metal=sulfur binding drive a highly dense arrangement
of adaorbates, (¢) Large terminal groups ( peptides, protains,
antibodies) sterically are unable to adopt a secondary
organization similar to that for alkanethiols with small
terminal groups. The resulting structures probably are
more disordered and less dense than those formed with the
types of molecules in a and by
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transition evidenced by SAMs of alkanethiolates termi-
nated with triethylene glyeol. The EGy group loses confor-
mational ordering upon solvation in water.




Temperature Programmed Desorption




Self-Assembly

Substrates

Interstitial adhesion layer
Noble metal layer
Organo-sulfur




Organosilanes

Self-assembled monolayers

Surface

silicon oxide:
silanisation

aluminum oxide:
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Immersion of substrate in a solution containing the adequate
molecules for 12 - 24 hours yields an ordered monolayer
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Synthesis of Silver Nanoparticles

1. A solution of ANO, (1.0 x 103 M) in deionized water was
heated until it began to boil.

2. Sodium citrate solution was added dropwise to the silver
nitrate solution as soon as the boiling commenced. The color
of the solution slowly turned into grayish yellow, indicating
the reduction of the Ag+ ions.

3. Heating was continued for an additional 15 min, and then the
solution was cooled to room temperature before employing
for further experimentation.
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Synthesis of Gold Nanoparticles
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Add 20 mL of 1.0 mM HAuUCI, to a 50 mL round bottom flask

on a stirring hot plate.

Add a magnetic stir bar and bring the solution to a boil.
To the boiling solution, add 2 mL of a 1% solution of

trisodium citrate dihydrate

The gold sol gradually forms as the citrate reduces the
gold(lll). Stop heating when a deep red color is obtained.

(1) MO Reducing Agent
M, O,

1 Nln +H 2 O
(medium) Ay

(Reducing Agent = R - COH)
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(medium) A

(2) M(L),

(L=NO3,C,H0)
(Reducing Agent = R - COH)

g




Construction of Core Shell Ag/Au@SiO, Nanoparticles

1. Under vigorous stirring, 1 ml of the silver/ gold colloids solution was mixed with
250 mL of isopropanol and 25 mL of deionized water.

2. Immediately after the addition of 4 mL of 30% ammonium hydroxide, different
amounts of tetraethoxysilane (TEOS) were added to the reaction mixture.

3. To obtain different silica layer thicknesses, TEOS solutions with a concentration
between 50% and 100% was added to the suspension. The reaction was stirred
at room temperature for 30 minutes and then was allowed to age without
agitation at 4 T overnight.

4. Each suspension of silica-coated silver/gold nanoparticles was washed and
centrifuged, followed by re-suspension in water. The thickness of the silica

layers was determined from TEM images .




Extindtion (Arb. Units)

Core-Shell Nanoparticles




2 4 [} 8
Wavelength (um)
1.7 o=— alectromolls —s 0.12

10

Figure 1. (@) Schematic ilustration of a
silica-core, gold-shell nanoshell,
indicating inner (ry) and outer (1) radif
of the shell layers. (b) Depiction of a
four-fayer, concentric nanoshell,

(c) Schematic illustration of a metalic
nanorod. (d) FPlot of nanosheill
resonance as a function of core and
sheil dimensions, overiaid with reported
spectral ranges of nanorod resonances
(red, fransverse plasmon, purpie,
longitudinal plasmon), and reported
nanoshell and concentric nanoshell
combined spectral range of plasmon
response.
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Figure 2. Plasmon hybridization and the sphere—cavity mode! for nanoshelis: the interaclion
between a sphere (resonance frequency, W) and a cavity plasmon (resonance frequency,
w,) is tuned by varying the thickness of the shell fayer of the nanoparticle. Two hybrid
plasmon resonances, the w_ “bright,” or "bonding,” plasmon and the w, "dark,” or
“anti-bonding,” plasmon resonances are formed. The lower-energy plasmon couples most
strongly to the optical field.
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Figure 5. (@) Plasmon hyDrndization picture appied [0 SUrace piasmon resonance sensing with nanosheds. the Iow-energy “Donding” piasmaon, w._ . is
sensitized o changes in its diglectnic emironment. The bive background schematicaly denoles the embedding medium for the nanoparticie

(D) Experimental curves showing plasmaon resonance shils for nanoshel-coalted Mims in vanous media. (1) carbon disuffide, (i) lofuene

(1) hexane, (iv) ethanol, (v} H;O, and (vi) air. The index of refraction for each embeading medium is noled on the far right of the spectra. Spectra

are offset for cianty. (c) ‘:-_"J'.']-'J"lg electron micrograph of nanoshelis deposited onlo a poly(viny! pyridine) functionalized Qiass surface, as used

to acquire data in (b). Inset individual nanoshell




Preparation of Fe;O,@Ag/Au

1. To the magnetic nanoparticle suspension obtained from commercial company,
add 50 ml of a solution of Au (lIl) salt or Ag (I) salt at concentration of 0.01-1%

mmol/L , shaking for 30 minutes, allowing Au (111) or Ag () ion to absorb on the
surface of magnetic nanoparticle sufficiently,

2. Then adding 15-40 ml of reducing agent, such as hydroxylamine hydrochloride
at concentration of 40 mmol/L, reacting for 5—-40 minutes.

3. Further adding 1-10 ml of a solution of Au (Ill) salt or Ag (l) salt at concentration
of 0.01-1%, shaking for 10 minutes, coating a reduced layer of gold or silver on
the surface of the magnetic nanoparticle, forming super-paramagnetic
composite particles having core/shell structure, separating magnetically,
washing repeatedly with distilled water.




Synthesis of Quantum Dots
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Figure 2. Two-step synthesis of core/shell nanocrystals.




-2
-3 —L (L] — [ |
E | |
3 48 ==
(3]
S im0 ™
b 2 1 =
h _— — —_—
‘_?._,'-aﬂ — -
m _—
=7
-Blzlzn.ﬂ-n.“éﬂ"ﬂm,ﬁﬂm“’”
:'“:“E'ém‘é‘%g-’“'n'u':‘g:
— 00 EpgEpgaCaCOONNN

Scheme 1. Electronic energy levels of selected lll-V and [1-VI semi-
conductors using the valence-band offsets from Reference [12] (VB:
valence band, CB: conduction band).
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Figure 1. Schematic representation of the energy-level alignment in
different core/shell systems realized with semiconductor NCs to date.
The upper and lower edges of the rectangles correspond to the pos-
itions of the conduction- and valence-band edge of the core (center) and
shell materials, respectively.




Successive lon Layer Adsorption
and Reaction

SILAR technique
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— —n Cd
N

CdSe core NCs

Figure 3. Shell synthesis using the SILAR method, schematically
illustrated for the CdSe/CdS core/shell system.
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Figure 4. Left panel: TEM images of CdSe NCs depicting the increase in diameter upon growth of
several monolayers of a CdS shell by means of the SILAR technique. Right panel: UV/Vis and PL
spectra of samples with different shell thicknesses. Reprinted with permission from Reference [25].
Copyright 2001, American Chemical Society.
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Figure 6. Top: TEM images at different magnifications of CdS/ZnS NCs. [63] Bottom: a) UV/
Vis absorption spectra; b) PL spectra recorded during the addition of 6 mL of the ZnS
precursor solution corresponding to the growth of a 5-monolayer-thick ZnS shell on 4-nm CdS
core NCs.
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Figure 9. a) Normalized PL spectra of CdTe/CdSe CS NCs having a core/
shell radii of 1.6/1.9nm, 1.6/3.2nm, 3.2/1.1nm, 3.2/2.4nm, 5.6/
1.9nm (from left to right, respectively). b) Normalized PL decays of 3.2/
1.1-nm CdTe/CdSe CS NCs and of the corresponding 3.2-nm CdTe core
NCs (dotted line). Reprinted with permission from Reference [37].
Copyright 2003, American Chemical Society.




Fig. 1 Suspensions of colloidal CdSe NCs of different sizes (1.7 to 4.5 nm
diameter, from left to right) under UV excitation. This iconic image of
colloidal nanoscience provides a beautiful visual demonstration of two
fundamental nanoscale effects: quantum confinement (size dependent
luminescence colours) and large surface to volume ratio (colloidal
stability).




Synthesis of CdSe/ZnS Quantum Dots

20mL (31lmg, 0.16 mmol) colloidal solution of CdSe QDs from stock solution (54mg
dissolved in 35mL toluene) was placed in a two-neck flask. TOPO (6g) and HAD (6g) were
added and then toluene was removed through vacuum, flask refilled with nitrogen. The
reaction mixture was heated at 350 °C for two hours. In another flask zinc acetate in 1:3 ratio
with respect of CdSe and was dissolved in 4mL of oleic acid stirred at 120 °C for 2 hours
obtained a light yellow coloured solution and temperature reduced to 60-70 °C. After cooling
to room temperature, TOPSe was mixed with Zn salt solution. And the mixture was injected
slowly through syringe in to reaction solution of CdSe-TOPO at 180-200 °C. The stirring was
done for another an hour. The similar procedure was followed for work up of reaction as avobe

experiment. The final product was re-dispersed in toluene.
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Template Synthesis
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Porous Materials

AAO
MCM-41

Mobil Crystalline Materials, or MCM-41

Santa Barbara Amorphous type material, or SBA-15

Micro: < 2nm
Meso:
Macro: > 50nm
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FIGURE 3. Schematic representation of the use of anionic orga-
noalkoxysilanes for controlling the functionalization of the MSN
materials. The MCM-41-type mesoporous channels are illustrated
by the parallel stripes shown in the transmission electron microscopy
(TEM) micrograph of the MSN-SH material. Reproduced with
permission from ref 15. Copyright 2005, Royal Society of Chemistry.




Figure 1. A. Schematic representation of a MSN loaded with drugs and capped with hard caps and soft caps highlighted in this
review. Transmission electron microscopy images of (B) a MSN along the axis of the mesopores, (C) capped with hard (Au NP)
and (D) with soft (polymer) caps.

MSN: Mesoporous sica nanopartde




Figure 5. Schematic representation of the glucose-responsive M5SN-based double delivery system for controlled release of
bicactive G-ins and cyclic AMP. The controlled release mechanism was achieved by mearns of the displacement reaction
between blood glucose and G-Ins based on reversible boronic acid-diol complexation. High glucose concentration triggers the
G-Ins uncapping and the release of cyclic AMP sequentially to diminish the higher than normal level of blood glucose.
Rapeodorad wih parmasion from 19
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Phase Segregation
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Self-Assembled Block-copolymer
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Fig. 1. Schematic of a CVD reactor for carbon nanotube growth. (Sketch by S. Yarmolenko from




Surface Functionalization

e Recognition o Surfaces
— Molecular Recognition — Gold and silver
* Protein — Silicon oxide (glass)

« DNA — Quantum dots
« Saccharide — Polymer

* Reporting/Detection
— Dye
— Quantum dots
— SPR
— SERS/LSPR

e Separation
— Gel/Chromatography
— Magnetic




Carboxyl Presenting Surfaces
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Silica Modification
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Fig. 1. (A} Emission maxima and sizes of quantum dots of different r.orrpﬂsmm Quantum dots can be
synthesized from various l;fpes of semiconductor materials (II-VE CdS, CdSe, CdTe...: lI-V: InP, InAs...; IV-Vi:
PbSe...) characterized by different bulk band gap energies. The curves represent experirnentd data from the
literature on the dependence of peak emission wavelength on qdot diameter. The range of emission wavelength
is 400 to 1350 nm, with size varying from 2 to 9.5 nm (organic passivation/solubilization layer not included).
All spectra are typically around 30 to 50 nm (full width at half maximum). Inset: Representative emission
spectra for some materials. Data are from (712, 18, 27, 76-82). Data for CdHgTe/ZnS have been extrapolated to
the maximum emission wavelength obtained in our group. (B) Absorption (upper curves) and emission (lower curves)
spectra of four CdSe/ZnS gdot samples. The blue vertical line indicates the 488-nm line of an argon-ion laser, which
can be used to efficiently excite all four types of qdots simultaneously. [Adapted from (28)] [C) Size comparison of
qdots and comparable objects. FITC, fluorescein isothiocyanate; GFP, green fluorescent protein; qdot, green (4 nm, top)
and red (6.5 nm, bottom) CdSe/ZnS qdot; grod, rod-shaped qdot (size from Quantum Dot Corp.'s Web site). Three
proteins—streptavidin (SAV), maltose binding protein (MBP), and immunoglobulin G (lgG)}—have been used for
further functionalization of qdots (see text) and add to the final size of the qdot, in conjunction with the solubilization
chemistry (Fig. 2).
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FIGURE 3 Maleimide functionalized QDs for conjugating thiol-containing ligands. TOPO stabi-
lized QDs are coated with a primary amine functionalized tri-block amphiphilic copolymer for pro-
ducing water-soluble QDs, which facilitate further conjugation to ligands with free thiols through
bi-functional cross-linkers.
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Scheme 1. Modular Design of Hydrophilic Ligands with Terminal
Functional Groups Used in This Study
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Figure 1. Fabncaton scheme for the construchon of multi-element DNA amavs. A clean gold surface 15 reacted with the amme-termmated alkanetiiol
MUAM, and subsequently reacted with Fmoc-NHS to create a hydrophobic surface. This surface 1s then exposed to UV radiation through a quartz
mask and nnsed with solvenr to remove the MUAM+Fmoc from specific areas of the surface, leaving bare gold pads. These bare gold areas on
the sample surface are filled i with MUAM, resulting m an array of MUAM pads surrounded by a hydrophobic Fmoc background. Solutions of
DNA are then delivered by pipet onto the specific array locations and are covalently bound to the surface via the bifunctonal linker SSMCC. In
the final rwo steps, the Fmoc-terminal groups on the array background are removed and replaced by PEG groups which prohibit the nonspecific
binding of analyte proteins to the background.
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Figure 2. Surface reaction scheme showing the steps involved m the
reversible modification of the array background. (Step 2) The starting
amune-ternunated alkanethiol surface (MUAM) 1s reacted with the
Fmoc-NHS protecting group to form a carbamate linkage thus creating
a hydrophobic Fmoc-termunated surface. (Step 6) After DNA im-
mobilization (see Figure 3), the hydrophobic Fmoc group 1s removed
from the surface with a basic secondary anune, resultung in the reurn
of the onigmal MUAM surface. (Step 7) In the final array fabrication
step. the deprotected MUAM 1s reacted with PEG-NHS to form an
amude bond that covalently attaches PEG to the array surface.
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Figure 3. Surface reaction scheme showing the immobilization of thiol-
terminated DNA to the array surface. In Step 5 of the DNA armray
fabrication, the heterobifunctional linker SSMCC 1s used to attach 5'-
thiol modified oligonucleotide sequences to reactive pads of MUAM.
This linker contamns an NHSS ester functionality (reactive toward
amines) and a maleimide functionality (reactive toward thiols). The
surface 1s first exposed to a solution of the linker, whereby the NHSS
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Scheme 2.2 Reagents for derivatization of glass

surfaces. T APTES = aminoprapyitriethoxysilane;

2 MPTS = 3-mercaptopropyltrimethoxysilane;
3 GPTS = glycidoxypropyltrimethoxysilane;
4 TETU = triethoxysilane undecanoic acig;

5 HE-APTS = bis{hydroxyethy)aminopropyltrieth-
oxysilane); 6 4.trimethoxysilylbenzaldehyde;
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hexaethylene glyeol: 8 poly{lysine).

Scheme 2.1 2D schematic description of a

polysiloxane monolayer on a glass surface
iX = terminal functional
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Figure 2.3 Schematic respresentation of a steptavidin sensor surface assembled on a
reacrinn-controlled biotinylated SAM [23].
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