PCR : Polymerase Chain Reaction
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3-Galactosidase

The enzyme that splits lactose into glucose and galactose. Coded
by a gene (lacZ) in the lac operon of Escherichia coli.
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PUC is a family of plasmids that have an ampicillin resistance gene and
more importantly a lacZ gene. A functional lacZ gene will produce the
protein B - galactosidase. Bacterial colonies in which 3 - galactosidase is
produced, will form blue colonies in the presence of the substrate 5 -
bromo - 4 - chloro - 3 - indolyl - b - D - galactoside or as it is more
commonly referred to, X-gal.
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FIG. 1. Enzymatic function of B-galactosidase in cleaving indicator substrates. B-gal cleaves p-D-galactoside containing substrates with a
diverse range of aglycone groups, targeting between the glycosyl oxygen and anomeric carbon as indicated (scissors). Substrates shown
indicate commonly used indicators for assays on p-gal function on plates (X-Gal) or for liquid assay by measure of fluorescence (MU-Gal or
MUG) or color (ONPG). Top left, X-Gal is 5-bromo-4-chloro-3-indolyl-B-D-galactoside, and when cleaved and oxidized produces the insoluble
dye 5-bromo-4-chloro-indigo. as described previously (22). Right panel. top. yeast colonies expressing p-gal and exposed to X-Gal (right half)
or the closely related compound Magenta-Cal (left half, see Biosynth, Inc., or Diagnostic Chemicals Limited). Middle left, MUG is
methylumbelliferyl-B-D-galactoside, and when cleaved by B-gal produces the fluorescent product methylumbelliferone (first described in
(102)). Right panel, middle, shows yeast lysates expressing B-gal exposed to MUG, under long-wave UV. Bottom left, PNPG and ONPG are
closely related nitrophenol-B-D-galactosides with similar assay properties, e.g.. (103), whose cleavage releases the yellow product nitrophenol
(right panel, bottom): PNPG is shown.



Green Fluorescent Protein (GFP)

The green fluorescent protein
(GFP) is a protein from the jellyfish
Aequorea victoria that fluoresces

green when exposed to blue light.
With GFP As Tracer

Stop Code
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| uciferase

luciferin

luciferase

Luciferase is a generic name for enzymes commonly used in nature for
bioluminescence. The name itself is derived from Lucifer, which means light-
bearer. The most famous one is firefly luciferase from the firefly Photinus
pyralis. In luminescent reactions, light is produced by the oxidation of a
luciferin (a pigment), sometimes involving Adenosine triphosphate (ATP). The
rates of this reaction between luciferin and oxygen are extremely slow until
they are catalyzed by luciferase, often mediated by the presence of calcium
ions (an analog of muscle contraction). The reaction takes place in two steps:
luciferin + ATP — luciferyl adenylate + PPi
luciferyl adenylate + O2 — oxyluciferin + AMP + light
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Nanomaterials

Metals and Alloys

— Fe, Al, Au

Semiconductors

— Band gap, CdS, TiO,, ZnO
Ceramic

— Al,O,, Si;N,, MgO, , SiO,, ZrO,
Carbon based

— Diamond, graphite, nanotube, C60, graphene
Polymers

— Soft mater, block co-polymer
Biological

— Photonic, hydrophobic, adhesive,
Composites



Surface to Volume Ratio

Total surface area
(height x width x
number of sides x
number of boxes)

Total volume
(height x width x length
x number of boxes)

Surface-to-volume
ratio
(surface area / volume)

Surface area increases while
total volume remains constant

—

'
6 150 750
1 125 125
6 12 6



Surface to Volume Ratio

Au: AAA
Atomic mass: 196.967
Density 19.31

Radii =0.144 nm
Number of Au atoms in 1 m 3.4 10°
Volume of Au atom 4.19 1028
Surface area Au atom 7.22 1019

Surface/volume ratio 1.72 10°
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Packing Fraction




Surfaces

 Collective surface area of nanocube 1 nm

* Porous materials
— Micropore (<2 nm)
— Mesopore (2 nm ~ 50 nm)
— Marcopore (> 50nm)

 Void volume
-V__/V

pore’ ¥ material
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Density of State
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Particle in a Box
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Particle in a Box
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Linear combination of atomic
orbitals molecular orbital method

@i = C1iX1 + C2iX2 +CaiXa + - - + CriXn
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(GOLD CUBOCTAHAL CLUSTER)




Vacuum

6s

5d

Atom Cluster Bulk

Figure 5 Energy diagram describing a generic Bloch-Wilson MIT in clusters (with
specific reference to the energy levels of mercury). For sufficiently large clusters, the
s-p band gap closes with increasing cluster size (shaded areas represent energy range
with occupied electron levels). Overlap leads to a “continuous™ DOS at Ef and to an
Insulator to Metal transition.



Bloch wave

ik

w'nk(r) — € .ru*nk(r)

A Bloch wave or Bloch state, named after Felix
Bloch, is the wavefunction of a particle (usually,
an electron) placed in a periodic potential.

en(k) = en(k + K),



The five fundamental two-
dimensional Bravais lattices
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Unit Cell

Bravais Parameters Simple (P) Volume Base Face

lattice centered (I) | centered (C) | centered (F)
ay # az # as

Tl'iClilliC [23%] # (DX # Qg
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Table 1.1: Bravais lattices in three-dimensions.
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Simple Face-centered Body-centered
cubic cubic cubic
Simple Body-centered Hexagonal
tetragonal tetragonal
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
‘ ﬁ Y 4 @
Simple Base-centered Triclinic

Rhombohedral Monoclinic monoclinic
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First Brillouin zone of FCC lattice
showing symmetry labels




Band Structures
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Figure 1. Schematic representation of the energy-level alignment in
different core/shell systems realized with semiconductor NCs to date.
The upper and lower edges of the rectangles correspond to the pos-
itions of the conduction- and valence-band edge of the core (center) and
shell materials, respectively.




Electron Sea
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Polymer
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Surface Energy

One face surface energy: y
27 cube: 27 X6 vy

3 x 9 cube line: 114 vy

3 X (3x3) square: 90 vy

3 X3 X 3 cube: 54 vy



Contact Angle

Hydrophobic Hydrophilic
Drop Drop
_A\
high contact angle low
poor adhesiveness good
poor wettability good
low solid surface free high
energy

ramé-hart instrument co.



Young's Equation

YsL + YLv €os B, = Ysv



Surface Energy Minimization

Surfactants
DLVO

Polymeric
Nucleation
Ostwald Ripening
Sintering
Restructure
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DLVO Theory

Vi=Va+ Vg + Vg

V, =-A/(12  D?)
A is the Hamaker constant and D is the particle separation
Vg =21 ea?exp(- kD)

a is the particle radius, 1 is the solvent permeability,
K is a function of the ionic composition and ¢ is the zeta potential
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Energia potenziale
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E] coalescence

') 0stwald ripening

Two main mechanisms are shown here: a, coalescence sintering, and b, Ostwald ripening sintering.
Coalescence sintering occurs when two clusters touch or collide and merge to form one bigger
cluster. In contrast, Ostwald ripening sintering occurs by evaporation of atoms from one cluster,
which then transfer to another. This is a dynamic process — both clusters exchange atoms, but the
rate of loss from the smaller cluster is higher, because of the lower average coordination of atoms at
the surface and their relative ease of removal. Thus big clusters get bigger at the expense of smaller
clusters, which shrink and eventually disappear. The latter process is the usual form of sintering for
metal clusters on a supported surface that are well spaced apart, although coalescence can occur
for a high density of clusters. In general, the presence of the surface results in SMORS (surface-
mediated Ostwald ripening sintering) in which material is transferred from one cluster to another by
diffusion across the surface, and not through the gas phase.



