

Intermolecular Interaction: Super Molecule Approximation

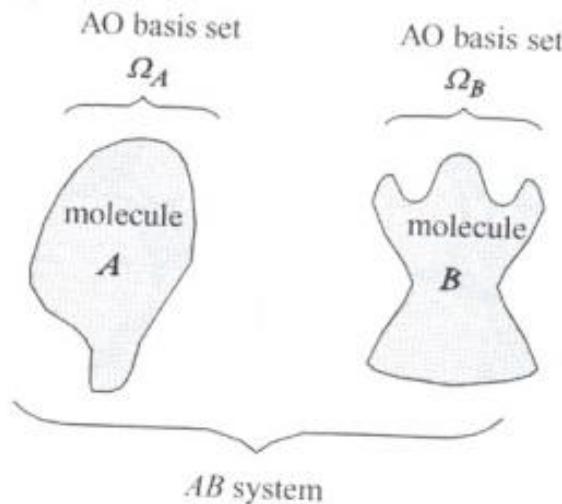
Super Molecule Approximation

To obtain the interaction between two waters perform calculation of two waters

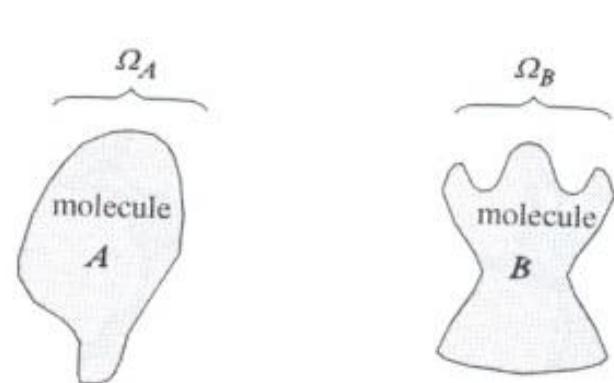
Two things to be careful

Size Consistency

- Consider $H_2 \dots H_2$ with CISD infinite far away
result for $H_2 \dots H_2$ is not equal to $2 H_2$!!

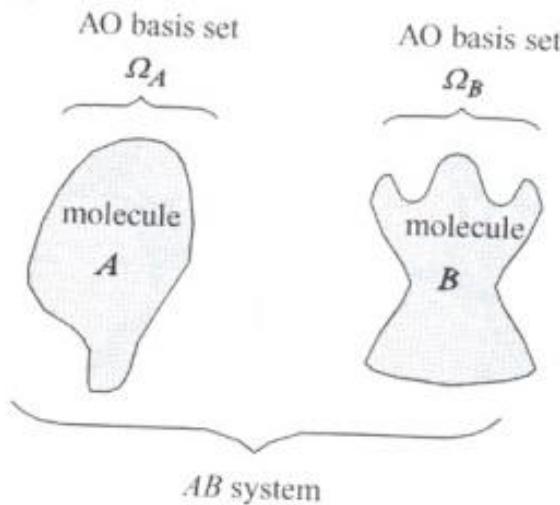

Size Consistent Methods

- HF
- MP2
- CCSD

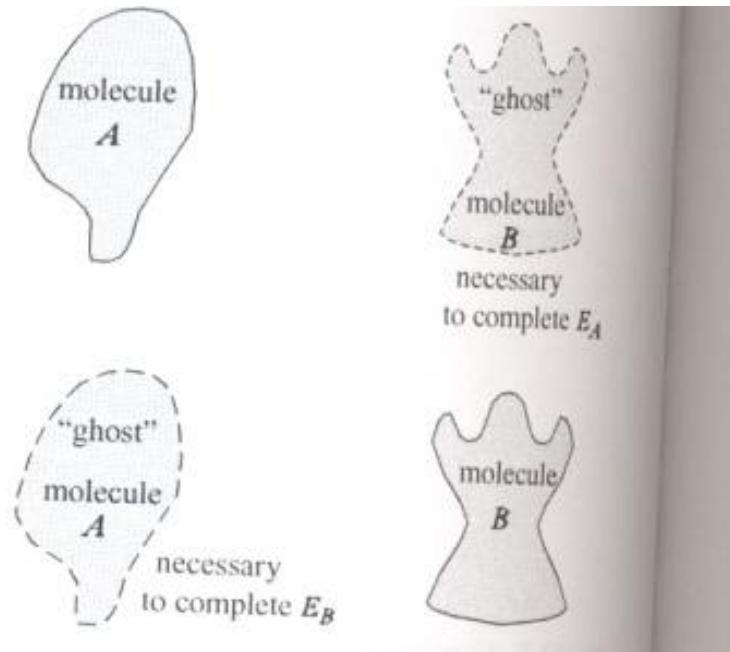

$$CCSD = \exp^{T_1 + T_2} D_0$$

$$= T_1 D_0 + T_2 D_0 + \frac{1}{2} [T_1 T_1 D_0 + T_2 T_2 D_0 + T_1 T_2 D_0]$$

Basis Set Super Position Error



VS



Counter Poise Correction

- Boys Lanbardi method:

VS

BSSE big for small basis sets

Gaussian CP Input

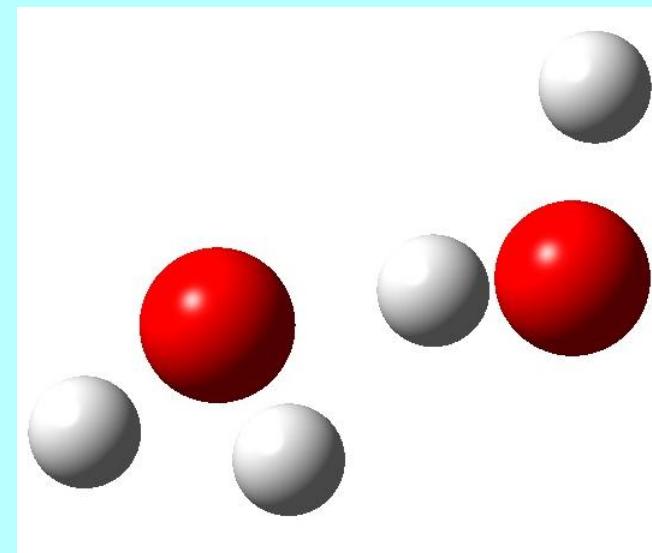
140.109.112.238:22 - Tera Term VI

File Edit Setup Control Window Resize Help

%Nproc=8

%mem=12Gb

B3LYP/STO-3G scf=(tight,maxcycle=200) CounterPoise=2


pop=min opt=(maxcycle=100,tight,calcall) IOP(1/11=1,99/14=1)

TITLE

0 1 0 1 0 1
O1 0.0 0.0 0.0,1
O2 1, R01O2,2

H3, 1, R01H3, 2, A02O1H2,1
H4, 2, R02H4, 1, A01O2H4, 3, DH3O1O2H4,0,2
H5, 2, R02H5, 1, A01O2H5, 3, DH3O1O2H5,0,2
H6, 1, R01H6, 3, AH3O1H6, 2, D02H3O1H6,0,1

R01O2=2.88716553
R01H3=0.96411241
R02H4=0.96581719
R02H5=0.96581719
R01H6=0.97337138
A02O1H2=110.30402085
A01O2H4=111.82487859
A01O2H5=111.82487859
AH3O1H6=105.9829422
DH3O1O2H4=120.58376085
DH3O1O2H5=-120.58376085
D02H3O1H6=0.

G09 CP output 1

140.109.112.238.22 - Tera Term VI

File Edit Setup Control Window Resize Help

NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDTO= 0
IlCent= 4 NGrid= 0.

Petite list used in FoFCou.

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A")
Virtual (A') (A') (A") (A') (A') (A") (A') (A') (A') (A")
(A') (A') (A") (A') (A') (A') (A") (A") (A') (A')
(A') (A') (A') (A") (A') (A") (A') (A') (A") (A')
(A') (A') (A") (A') (A') (A") (A') (A') (A") (A')
(A') (A') (A") (A') (A') (A") (A') (A') (A") (A')

The electronic state of the initial guess is 1-A'.

Requested convergence on RMS density matrix=1.00D-08 within 200 cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

Keep R1 ints in memory in canonical form, NReq=2444600.

Integral accuracy reduced to 1.0D-05 until final iterations.

Initial convergence to 1.0D-05 achieved. Increase integral accuracy.

SCF Done: E(RB3LYP) = -152.877717698 A.U. after 11 cycles
Convg = 0.8255D-08 -V/T = 2.0093

Range of M.O.s used for correlation: 1 58

NBasis= 58 NAE= 10 NBE= 10 NFC= 0 NFV= 0

NR0rb= 58 NOA= 10 NOB= 10 NVA= 48 NVB= 48

Symmetrizing basis deriv contribution to polar:

IMax=3 JMax=2 DiffMx= 0.00D+00

G2DrvN: will do 7 centers at a time, making 1 passes doing MaxLOS=2.

Calling FoFCou, ICntrl= 3107 FMM=F IlCent= 0 AccDes= 0.00D+00.

FoFDir/FoFCou used for L=0 through L=2.

End of G2Drv Frequency-dependent properties file 721 does not exist.

a63/h2oh2obsse.log lines 305-333/2952 9%

G09 CP output2

140.109.112.238.22 - Tera Term VI

File Edit Setup Control Window Resize Help

```
(A') (A") (A') (A") (A') (A") (A') (A") (A") (A')  
(A') (A") (A') (A") (A') (A") (A') (A") (A") (A')  
(A') (A") (A')
```

The electronic state of the initial guess is 1-A'.

Requested convergence on RMS density matrix=1.00D-08 within 200 cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

Keep R1 ints in memory in canonical form, NReq=2444600.

Integral accuracy reduced to 1.0D-05 until final iterations.

Initial convergence to 1.0D-05 achieved. Increase integral accuracy.

SCF Done: E(RB3LYP) = -76.4342897524 A.U. after 9 cycles

Convg = 0.7734D-08 -V/T = 2.0094

Range of M.O.s used for correlation: 1 58

NBasis= 58 NAE= 5 NBE= 5 NFC= 0 NFV= 0

NR0rb= 58 NOA= 5 NOB= 5 NVA= 53 NVB= 53

Symmetrizing basis deriv contribution to polar:

IMax=3 JMax=2 DiffMx= 0.00D+00

G2DrvN: will do 7 centers at a time, making 1 passes doing MaxLOS=2.

Calling FoFCou, ICntr1= 3107 FMM=F IlCent= 0 AccDes= 0.00D+00.

FoFDir/FoFCou used for L=0 through L=2.

End of G2Drv Frequency-dependent properties file 721 does not exist.

End of G2Drv Frequency-dependent properties file 722 does not exist.

IDoAtm=111111

Differentiating once with respect to electric field.

with respect to dipole field.

Differentiating once with respect to nuclear coordinates.

Keep R1 ints in memory in canonical form, NReq=2286689.

There are 18 degrees of freedom in the 1st order CPHF. IDoFFX=4.

G09 CP output3

140.109.112.238.22 - Tera Term VT

File Edit Setup Control Window Resize Help

No special actions if energy rises.

Keep R1 ints in memory in canonical form, NReq=2444600.

Integral accuracy reduced to 1.0D-05 until final iterations.

Initial convergence to 1.0D-05 achieved. Increase integral accuracy.

SCF Done: E(RB3LYP) = -76.4350853742 A.U. after 10 cycles

Convg = 0.2372D-08 -V/T = 2.0094

Range of M.O.s used for correlation: 1 58

NBasis= 58 NAE= 5 NBE= 5 NFC= 0 NFV= 0

NROrb= 58 NOA= 5 NOB= 5 NVA= 53 NVB= 53

Symmetrizing basis deriv contribution to polar:

IMax=3 JMax=2 DiffMx= 0.00D+00

G2DrvN: will do 7 centers at a time, making 1 passes doing MaxLOS=2.

Calling FoFCou, ICntr1= 3107 FMM=F IlCent= 0 AccDes= 0.00D+00.

FoFDir/FoFCou used for L=0 through L=2.

End of G2Drv Frequency-dependent properties file 721 does not exist.

End of G2Drv Frequency-dependent properties file 722 does not exist.

IDoAtm=111111

Differentiating once with respect to electric field.

with respect to dipole field.

Differentiating once with respect to nuclear coordinates.

Keep R1 ints in memory in canonical form, NReq=2286689.

There are 18 degrees of freedom in the 1st order CPHF. IDoFFX=4.

18 vectors produced by pass 0 Test12= 1.47D-15 5.56D-09 XBig12= 3.76D+00 1.15D+00.

AX will form 18 A0 Fock derivatives at one time.

18 vectors produced by pass 1 Test12= 1.47D-15 5.56D-09 XBig12= 2.96D-01 1.75D-01.

18 vectors produced by pass 2 Test12= 1.47D-15 5.56D-09 XBig12= 1.17D-03 1.09D-02.

18 vectors produced by pass 3 Test12= 1.47D-15 5.56D-09 XBig12= 9.28D-07 2.18D-04.

10 vectors produced by pass 4 Test12= 1.47D-15 5.56D-09 XBig12= 2.03D-10 4.32D-06.

3 vectors produced by pass 5 Test12= 1.47D-15 5.56D-09 XBig12= 5.71D-14 7.61D-08.

G09 CP output4

140.109.112.238.22 - Tera Term VI

File Edit Setup Control Window Resize Help

Harris functional with IExCor= 402 diagonalized for initial guess.
ExpMin= 8.45D-02 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=2 IRadAn= 0 AccDes= 0.00D+00
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 0 IDoV= 1
ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlgl= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDTO= 0
IlCent= 4 NGrid= 0.

Petite list used in FoFCou.

Initial guess orbital symmetries:

Occupied	(A')	(A')	(A')	(A')	(A")											
Virtual	(A')	(A')	(A')	(A")	(A')	(A')	(A')	(A")								

The electronic state of the initial guess is 1-A'.

Requested convergence on RMS density matrix=1.00D-08 within 200 cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

Keep R1 ints in memory in canonical form, NReq=1023578.

Integral accuracy reduced to 1.0D-05 until final iterations.

Initial convergence to 1.0D-05 achieved. Increase integral accuracy.

SCF Done: E(RB3LYP) = -76.4339805694 A.U. after 10 cycles
Convg = 0.6861D-08 -V/T = 2.0094

Range of M.O.s used for correlation: 1 29

NBasis= 29 NAE= 5 NBE= 5 NFC= 0 NFV= 0
NR0rb= 29 NOA= 5 NOB= 5 NVA= 24 NVB= 24

Symmetrizing basis deriv contribution to polar:

a63/h2oh2obsse.log lines 798-826/2952 25%

G09 CP Output 5

- 149.109.112.238.22 - Tera Term v1

File Edit Setup Control Window Resize Help

NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMatDS0= 0 NMatDTO= 0
IlCent= 4 NGrid= 0.

Petite list used in FoFCou.

Initial guess orbital symmetries:

Occupied (A') (A') (A") (A') (A')
Virtual (A') (A") (A') (A') (A") (A') (A") (A') (A') (A")
(A') (A') (A") (A') (A') (A') (A") (A") (A") (A')
(A') (A') (A") (A')

The electronic state of the initial guess is 1-A'.

Requested convergence on RMS density matrix=1.00D-08 within 200 cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

Keep R1 ints in memory in canonical form, NReq=1023578.

Integral accuracy reduced to 1.0D-05 until final iterations.

Initial convergence to 1.0D-05 achieved. Increase integral accuracy.

SCF Done: E(RB3LYP) = -76.4340436903 A.U. after 11 cycles
Convg = 0.2148D-08 -V/T = 2.0093

Range of M.O.s used for correlation: 1 29

NBasis= 29 NAE= 5 NBE= 5 NFC= 0 NFV= 0
NROrb= 29 NOA= 5 NOB= 5 NVA= 24 NVB= 24

Symmetrizing basis deriv contribution to polar:

IMax=3 JMax=2 DiffMx= 0.00D+00

G2DrvN: will do 4 centers at a time, making 1 passes doing MaxLOS=2.

Calling FoFCou, ICntrl= 3107 FMM=F IlCent= 0 AccDes= 0.00D+00.

FoFDir/FoFCou used for L=0 through L=2.

End of G2Drv Frequency-dependent properties file 721 does not exist.

End of G2Drv Frequency-dependent properties file 722 does not exist.

IDoAtm=010110

a63/h2oh2obsse.log lines 958-986/2952 30%

G09 CP output 6

File Edit Setup Control Window Resize Help
 XXX= 0.7498 YYY= 22.5927 ZZZ= 0.0000 XYY= -5.5874
 XXY= 9.2561 XXZ= 0.0000 XZZ= -0.6970 YZZ= 5.4362
 YYZ= 0.0000 XYZ= 0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX= -8.0777 YYYY= -79.0708 ZZZZ= -6.4989 XXXY= -0.9957
 XXXZ= 0.0000 YYX= 8.9559 YYZ= 0.0000 ZZX= 0.0000
 ZZZY= 0.0000 XXYY= -15.3346 XXZ= -2.1796 YYZZ= -9.0910
 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 1.3695
 N-N= 9.109290856459D+00 E-N=-1.985116560294D+02 KE= 7.572912647887D+01
 Symmetry A' KE= 7.212155936992D+01
 Symmetry A" KE= 3.607567108950D+00
 Exact polarizability: 6.614 -0.048 6.638 0.000 0.000 7.868
 Approx polarizability: 7.333 0.402 7.139 0.000 0.000 9.711
 Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 IlCent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
 ***** Axes restored to original set *****
 Cartesian Forces: Max 0.001082144 RMS 0.000365181
 Counterpoise: corrected energy = -152.876366830967
 Counterpoise: BSSE energy = 0.001350866952
 Rotating derivatives to standard orientation.
 ***** Axes restored to original set *****

Center Number	Atomic Number	Forces (Hartrees/Bohr)		
		X	Y	Z
1	8	0.000007243	0.000000000	-0.000394080
2	8	-0.000229675	0.000000000	0.001361959
3	1	-0.000100064	0.000000000	-0.000005053
4	1	0.000099739	0.000182663	-0.000192429
5	1	0.000099739	-0.000182663	-0.000192429

a63/h2oh2obsse.log lines 1074-1102/2952 34%

Optimized Geometry CP

140.109.112.238:22 - Tera Term VT

File Edit Setup Control Window Resize Help

```

B after Tr= 0.006159 0.000000
          Rot= 0.707020 0.707020
Final structure in terms of initial
0
0,1,R0102
H,1,R01H3,2,A0201H2
H,2,R02H4,1,A0102H4,3,DH30102H4,0
H,2,R02H5,1,A0102H5,3,DH30102H5,0
H,1,R01H6,3,AH301H6,2,D02H301H6,0
Variables:
R0102=2.6517193
R01H3=1.02615327
R02H4=1.02322995
R02H5=1.02322995
R01H6=1.03980174
A0201H2=99.49155311
A0102H4=103.00102657
A0102H5=103.00102657
AH301H6=97.70616897
DH30102H4=128.99726993
DH30102H5=-128.99726993
D02H301H6=0.

Test job not archived.
1W1WGINC-NODE107WFreqWRB3LYPWST0-3G
ST0-3G scf=(tight,maxcycle=200) # pop
all) IOP(1/11=1,99/14=1)WWTITLEWW0,.
,0.1454085382,0.,2.7657261145WH,0.89
535845,0.7748448153,3.0516002088WH,.
h2oh2o.log lines 1750-1778/1823 97%

```

w/o CP

140.109.112.238:22 - Tera Term VT

File Edit Setup Control Window Resize Help

```

B after Tr= 0.006159 0.000000 2.855928
          Rot= 0.707077 0.707077 -0.006454 -0.006
Final structure in terms of initial Z-matrix:
0,0,0.,0.,0.
0,1,R0102
H,1,R01H3,2,A0201H2
H,2,R02H4,1,A0102H4,3,DH30102H4,0
H,2,R02H5,1,A0102H5,3,DH30102H5,0
H,1,R01H6,3,AH301H6,2,D02H301H6,0
Variables:
R0102=2.90788898
R01H3=1.02621525
R02H4=1.02516631
R02H5=1.02516631
R01H6=1.02998873
A0201H2=98.26802848
A0102H4=108.78489309
A0102H5=108.78489309
AH301H6=97.37793029
DH30102H4=127.27563369
DH30102H5=-127.27563369
D02H301H6=0.

Test job not archived.
1W1WGINC-NODE107WFreqWRB3LYPWST0-3GWH402WKAIT0W01-May-201
ST0-3G scf=(tight,maxcycle=200) CounterPoise=2 # pop=min
=100,tight,calcall) IOP(1/11=1,99/14=1)WWTITLEWW0,1W0,-0.
,-0.0406757973W0,0.0972896936,0.,2.8632527339WH,0.9520411
0334712WH,-0.4725058987,0.7723047975,3.2235918031WH,-0.47
h2oh2obsse.log lines 4051-4079/4133 98%

```

with CP

Excited Electronic States Calculation

Method for Excited States

- Use more than one slater determinant
 - CISD: Configuration Interaction Singles and Doubles
 - CCSD: Coupled Cluster Singles and Doubles
 - MCSCF: Multiconfigurational Self Consistent Field
 - MR-CISD: Multireference CISD
- CAS MP2
 - MP2,3,4: Mollar Plesset perturbation theory
- Equation of Motion CCSD
- Time Dependent DFT (TD-B3LYP)

Molecular Dynamics

Molecular Dynamics Simulation

For electrons we have to solve the quantum Schroedinger Equation
For nuclei we only consider that they move classically

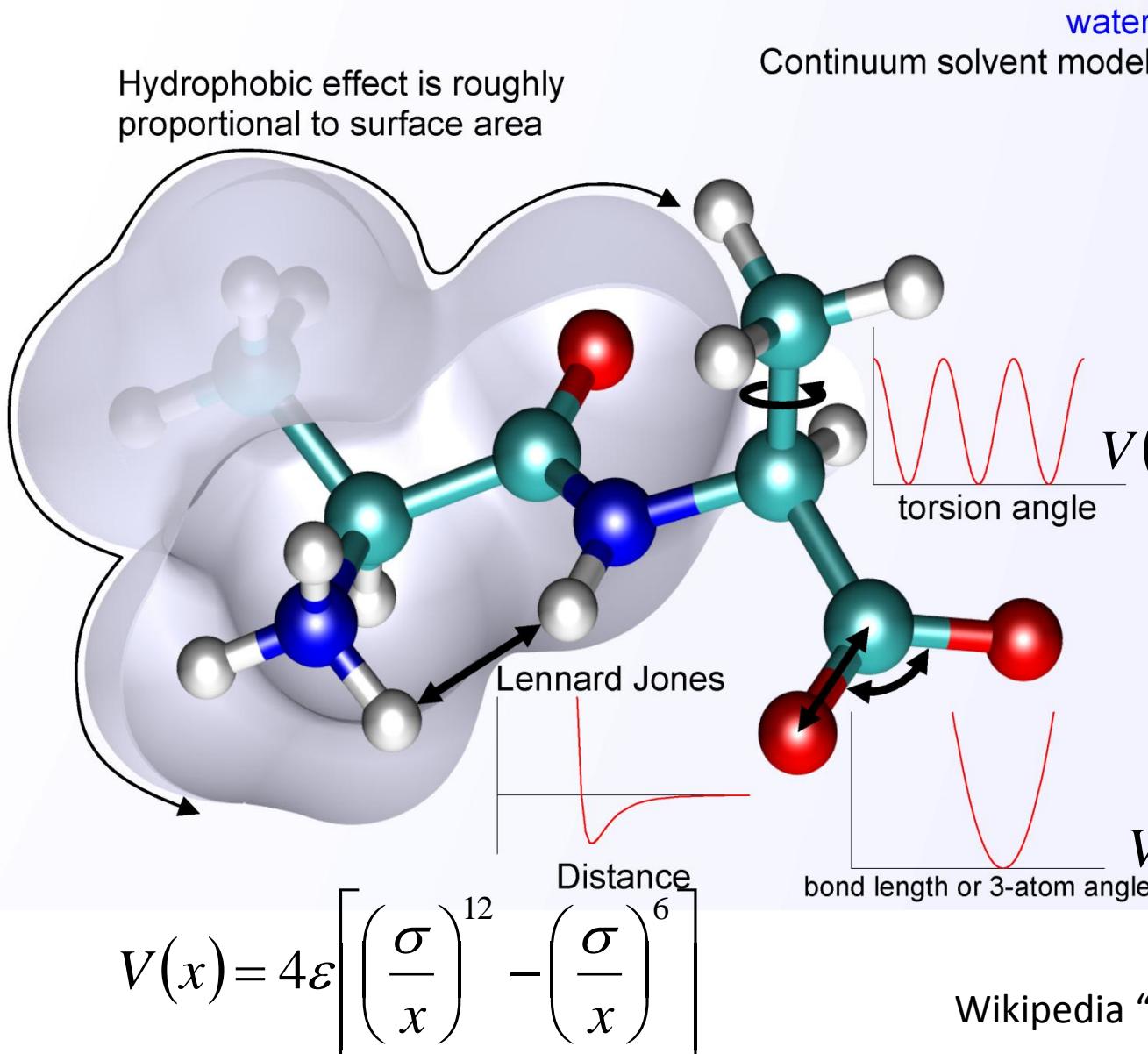
Force on nuclei can be obtained from potential derivative

Initial Condition:

$$V(x) = \frac{1}{2} k (x - x_{eq})^2$$

For example for harmonic oscillator

$$-\frac{dV}{dx} = -k(x - x_{eq})$$


Method of Propagation1

Goal:

$$\frac{dx}{dt} = f(x, t); \quad x(t_0) = x_0 \rightarrow x(t_{final}) \text{ in time step } \Delta t$$

- Euler method (first order method take gradient)
- 4th order Runge-Kutta propagation : add up contribution along the way

Types of Force Fields used in Molecular Mechanics

On the fly simulation

At every time step solve the electronic Schrodinger equation

Good Points

1. Accurate
2. Can describe reaction
3. Do not have to worry about fitting problems

Bad Points

1. Computational time is great so can only be used for short time propagation
2. Can not perform detailed analysis

Gaussian 09 BOMD input

140.109.112.238:22 - Tera Term VT

File Edit Setup Control Window Resize Help

```
%nproc=2
%mem=2Gb
%chk=/lustre/lwork/scratch/kaito/wat10-3.chk
# B3LYP/6-31+G(d,p)
# pop=min units=au SCF=tight nosymm maxdisk=4Gb
# BOMD(Maxpoints=1000,stepsize=1000,ReadMWvelocity,ReadStop)
```

trajectory calculation

```
0 1
O1  -0.863964985562D-01 -0.465751539278D-33 -0.524452197259D-01
H2  -0.240504743927D+00  0.568982937356D-32  0.153669402428D+01
H3   0.189541778845D+01  0.335720196411D-32 -0.813279591197D+00
```

```
0
0.543857995191400D+13, 0.230208768635600D-17, 0.143083506622000D+14,
-0.239948954079300D+14, 0.154458636218000D-17, -0.314144625994200D+14,
-0.162146179720623D+15, -0.186620915654356D-17, 0.375559408901498D+14,
```

kaito@master:/lustre/lwork/kaito/kaito/G09/h2o/traj/traj10-3>

G09 BOMD output 1

140.109.112.238:22 - Tera Term VT

G09 BOMD output 2

140.109.112.238:22 - Tera Term VT

File Edit Setup Control Window Resize Help

0.00000000D+00

Summary information for step 2
Time (fs) 0.000000
EKin = 0.0157313; EPot = -76.3945963; ETot = -76.3788650 A.U.
Angular momentum (instantaneous)
JX = -0.1533484188D-30 JY = 0.8873643111D+00 JZ = -0.2143161482D-30
Jtot = 0.8873643111D+00 H-BAR; J (Quantum Number) = 0.5185359202D+00
Total energy -7.637887D+01 A.U.
Total angular momentum 8.873643D-01 h-bar
Cartesian coordinates: (bohr)
I= 1 X= -1.022737453426D-01 Y= 0.000000000000D+00 Z= -4.634981756906D-02
I= 2 X= -2.563819907134D-01 Y= 0.000000000000D+00 Z= 1.542789426437D+00
I= 3 X= 1.879540541664D+00 Y= 0.000000000000D+00 Z= -8.071841890402D-01
MW cartesian velocity: (sqrt(amu)*bohr/sec)
I= 1 X= 5.438579951914D+12 Y= 0.000000000000D+00 Z= 1.430835066220D+13
I= 2 X= -2.399489540793D+13 Y= 0.000000000000D+00 Z= -3.141446259942D+13
I= 3 X= -1.621461797206D+14 Y= 0.000000000000D+00 Z= 3.755594089015D+13
Next step-size 0.1000000000D+00 sqrt(amu)*bohr
Do projection in prediction step
Use Bulirsch-Stoer Integration Method First
Energy from last cycle -0.7637886505D+02 A.U.
Energy from this cycle -0.7637886890D+02 A.U.
Predict stepsize 0.1000000000D+00 sqrt(amu)*bohr
Time increment 0.5203919673D+00 femtosec

Predicted information for step 3
Time (fs) 0.520392
EKin = 0.0264695; EPot = -76.4053384; ETot = -76.3788689 A.U.
test.log.gz lines 342-370/164078 0%