
Solving Hartree Fock Equation  
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HF Roothaan Equation 
For molecules numerical basis not efficient so use atom centered 

basis set to describe the molecular orbital 
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Self Consistent Field 

We just have to solve the fock equation:  

PROBLEM FOCK OPERATOR HAS THE SOLUTION INSIDE 

  S CCCF 

Continue the cycle until you get convergence on Cinput and Coutput 

Self consistent field (SCF) method 
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Fock Operator in Basis Representation 
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Fock Operator in Basis Representation 
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Self Consistent Field Method  
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Slater Type Orbital  
vs  

Gaussian Type Orbital 

In the H2 case we used Slater type orbitals for radial part where 

basis on HA is given as 

Another tye is a Gaussian type orbital for the radial part where 

basis on H Ais given as 
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Solve the hydrogen atom by Gaussian 
Function 
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Hint: Gaussian Integrals 
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(ans -0.424, 0.076 hartree off from the true value of -0.5)   10 
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Linear Combination of GTO 
Contracted GTO: One GTO is not enough to describe the STO type 

orbital so lets use more than one GTO and add with correct 

coefficient (d) and exponent () value 
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Basis Sets 
• Minimal Basis: only those in atomic orbital so one 1S 

orbital for hydrogen, one 1S, 2S, 2P for carbon, oxygen 

• STO-3G 

• Split Valence: valence orbital has two, for hydrogen two 
1S orbital, one 1S and two 2S, 2P for carbon oxygen 

• 6-31G, 3-21G 

• Diffuse: large version of valence orbital 

• +, ++ 

• Polarization: higher angular momentum add 2P for 
hydrogen, add 3D for carbon, oxygen 

• *,**, (d), (d,p) 
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Dunning Correlation Consistent 
Basis Set 

T. Dunning decided on defining the contraction coefficient and 
exponential coefficient to maximize electron correlation 

aug-cc-pVDZ  (X=2) 
aug-cc-pVTZ  (X=4) 
aug-cc-pVQZ (X=4) 
aug-cc-pV5Z (X=5) 
 

       2
1exp1exp  XCXBEXE CBS
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Basis Set Effective Core Potential 
• Most Chemistry occurs between valance 

electrons, electrons in the core do not contribute 
to important reactions use 

 

 

 

 

 Hay-Wadt:  LANL2DZ LANL2TZ, Dolg 

In bulk simulation like VASP it is called Psuedo 
potential 
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Basis Set Library 
(https://bse.pnl.gov/bse/portal) 
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Pick Basis Set Convergence 
Dipole moment of H2O 

Computational time ~ (# of basis)2 

Method # of basis Debye

HF/STO-3G 7 1.7076

HF/6-31G 13 2.5006

HF/6-31+G 17 2.5824

HF/6-31+G(d,p) 29 2.2339

HF/6-311G 19 2.4881

HF/6-311++G 25 2.5536

HF/6-311++G(d,p) 37 2.1959

HF/6-311++G(3d,3p) 61 1.9744

HF/6-311++G(3df,3pd) 83 1.9681

HF/aug-cc-pVTZ 105 1.9394

HF/aug-cc-pVQZ 215 1.9361

Exp 1.8550
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Using the Gaussian 09 Program 
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Making INPUT 1 
• First lines are input of method and basis set 

• #P HF/STO-3G pop=reg 

• Empty line 

• Title of the calculation: Anything is OK 

• Empty line 

• Charge and spin multiplicity: usually we 
consider neutral molecule so charge 0, 
multiplicity is number of unpaired electrons 
+1, usually we consider filled electron so 1 
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Making INPUT 2 

• Then define the molecule either using XYZ or 
Z-matrix input 

 

 

 

 

 

 

• Then end with one blank line 

O1 
O2    1,   RO1O2 
H3,   2,   RO2H3,   1,   AO1O2H3 
H4,   1,   RO1H4,   2,   AO2O1H4,    3,   DH3O2O1H4 
 
 RO1O2=1.50845307 
 RO2H3=0.97 
 RO1H4=0.97 
 AO1O2H3=110.0 
 AO2O1H4=110.0 
 DH3O2O1H4=109. 

O1 0.000000    0.754227   -0.058812 
O2 0.000000   -0.754227   -0.058812 
H3 -0.742068   -1.085986    0.470499 
H4 0.742068    1.085986    0.470499 
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Single Point Calculation SCF 

• Check how many cycles is needed to converge 
the result, what happens when you add 
SCF=tight keyword 

• Check the viral condition should be close to 2 
(this is not satisfied when you use Effective 
Core Potential) 
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Gaussian Input of H2 
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Gaussian Output 1of H2 
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Gaussian Input of H2 
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Diatomic Molecule Calculate Potential 
energy Curve 

• Calculate the energy of H2 at different bond 
length, plot the energy versus bond length 
and find the equilbrium point, lowest energy 
bond length 
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Potential Energy Curve Input 
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Potential Energy Curve 

Potential minimum 
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How to quantify Minimum? 
• At the minimum the first derivative is zero and 

the second derivative is always positive 

 Check the Hessian (second derivative) 

 In Gaussian you can use the freq keyword 

Harmonic Oscillator 
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Optimization and Vibrational 
Frequency 

• Add in opt and freq keyword to the line of 
command 

• Compare criteria of optimization opt, 
opt=tight, opt=verytight 

• Compare frequency results with experiment  
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Optimize Geometry Input 
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Optimize Geometry 1 

 
dx

xdV
F 
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Optimize Geometry 2 

 
dx

xdV
F 

32 



Optimize Geometry 3 

 
dx

xdV
F 

33 



Optimize Geometry 4 Frequency 
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Koopmans’ Theorem and 
Unrestricted Hartree Fock 
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HF Roothaan Equation 
For molecules numerical basis not efficient so use atom centered 

basis set to describe the molecular orbital 

  N basisaC
N b a s i s

u

uu aa ,...2,1         
1

1  


 r

     

 

         

NbasisaSCFC

dCdfC

CCf

f

Nbasis

u

vuuaa

Nbasis

u

vuua

Nbasis

u

uvuaa

Nbasis

u

uvua

Nbasis

u

uuaa

Nbasis

u

uua

aaa

,...2,1         

**

11

1

111

1

1111

11

1

111











  

















rrrrrrr

r

rrr

S CF C 

Nbasis is usually more than the total number of orbitals needed n/2 

For a closed shell system  
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Occupied Orbital, Unoccupied/Virtual 
Orbital 

The first n orbitals of a spin orbital (n/2 spacial orbital* alpha, 

n/2 spacial orbital * beta) is called 

 

The rest of 2*Nbasis-n orbitals (Nbasis-n/2 spacial * alpha, 

and Nbasis-n/2 spacial* beta) 

Is there any physical meaning to these orbitals 

37 



Orbital Energy and Total Hartree Fock 
Energy 
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Double Counting by Orbital energy 

Sum of orbital energy has excess energy of   
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1 12
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What does orbital energy mean? 

i  

 

j  

 

Add i and j we have twice the electron interaction 

 

If the sum of the orbital energies is not total energy what physical 

significance can we say about the orbital energy? 
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Koopmans’ Theorem 

Let’s consider taking an electron away from orbital k to make an 

n-1 electron system 
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Remember symmetry? 

Ionization energy given by the negative of orbital energy that 

electron ionizes from. 
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Koopmans’ Theorem 

Let’s consider adding an electron to orbital r to make an n+1 

electron system 
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Electron affinity is given by the negative of orbital energy that the 

electron occupies 
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Unrestricted Hartree Fock 
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Virial Theorem Classical  
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Virial Theorem Quantum  
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First lets do this for one particle in the x-direction 

Therefore 
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Virial Theorem Quantum  
Time average of  
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If V=xs 

For coulombic interactio s=-1 
For harmonic oscillator s=2 

Take a look at your gaussian outputs 
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Projects Hartree Fock Calculations 
• Energy of H (different basis sets) compare 

with exact answer, binding energy of H2 

(different basis set), extrapolation compare 
distance 

• HF, HCl, HBr, binding energy, charge 
distribution, compare bond length 

• F2, Cl2, Br2 binding energy, bond length, 
vibrational frequency 

• Li2, Be2, B2, C2, N2, O2, F2, which spin state is 
most stable  
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