
Homonuclear Diatomic Molecule 
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Energy Diagram 
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H2
+, H2, He2

+, He2 
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Molecular Orbitals: Sum of Atomic 

Orbitals Sigma and Pi  
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Symmetry of Orbitals Important 
Allowed Combinations 

Not Allowed Combinations: S=0, HAB=0 
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Binding Energy: Orbital Interaction 
• Binding depends on overlap of atomic orbitals:  

  

 

    Energies of atomic orbital closer the better  
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Consider the interaction of Orbital of atom A and B at EA and EB 

Assume S=0 and |EA-EB| >> EAB 
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Second Row Homonuclear diatomic 

Molecules Ignore 

1S interaction 

Since too small 

Valance 

Orbitals are 

considered 

HOMO LUMO Gap ↔ Band Gap 
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Homo/Heteronuclear Diatomic 

Molecules 
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CO Molecule: Orbitals 
In heterodiatomic molecules 

electronegativity of the atoms determine the 

shape of the orbital 

BBAA CC   CA and CB define the density on A and B 

If A is more electronegative: 
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Polyatomic Molecules 
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Water H2O 
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Linear H3 

H H H 

Fragment 1 

Fragment 2 

Fragment 1 

Fragment 2 
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Hartree-Fock Roothaan Equation 

Electronic Structure 

Kaito Takahashi 
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Born-Oppenheimer Approximation 
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Solve for the electron at a fixed nuclear geometry 

Calculate many nuclear geometries to obtain the potential 

energy surface 
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Problem To Solve with trial WF 
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Operators and Matrix Elements 

Hamiltonian is a sum of one and two electron operators 

For example hydrogen molecule 
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One Electron Operator Matrix Element 
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Due to orthonormality of the spin orbitals last two are zero 

with integration with respect to x2 
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One Electron Operator 2 
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Two Electron Operator Matrix Element 
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Two Electron Operator 2 
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So the expectation value of the hamiltonian with the 

Slater determinant for two electron system is 

Symbols physics people use: lkijklijklij || 

Symbols chemistry people use: 
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Expectation Value of Slater Det 
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For one electron operators we consider the sum of each 

electron, for two electron operators the sum of pairs of 

electrons 
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Expectation of One Electron 

Operator of Slater Det 
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Expectation Value of a Two electron 

Operator for Slater Det 
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Since electron in slater determinant is indistinguishable we solve 

for electron 1 and 2 and multiply by the number of pairs 
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Hartree Fock Approximation 1 
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How do you find the best answer for the spin orbitals? 
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Hartree Fock Approximation 2 
Functional minimization with constraint 

Functional derivative with respect to change of spin orbital 

iii   should be zero 
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Hartree Fock Approximation 3 
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Hartree Fock Approximation 4 
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Hartree Fock Approximation 5 
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Coulomb and Exchange Integral 
Coulomb Integral 

Exchange Integral 
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Hartree Fock Approximation 6 
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Fock Operator of spin orbitals 
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Canonical Hartree Fock 
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Canonical Hartree Fock 
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Canonical Hartree Fock 

Fock Operators are invariant to unitary transformation of spin 

orbitals    11 ' xx ff 
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n

j

jjii ,...2,1         
1

111  


xxx 

therefore 

If we find a unitary matrix that diagonalizes  then 
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Canonical spin orbitals are eigen function of canonical fock operator  
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Orbital Energy and Total Hartree 

Fock Energy 
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Closed Shell Hartree Fock 

Approximation 
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The above equation is based on spin orbitals assuming that we 

will only consider closed shell systems with same orbital for 

different spin 
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Closed Shell HF Approximation 
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The Hartree Fock approximation energy is 

Can use numerical basis to solve the HF equation.   36 


