Homonuclear Diatomic Molecule



Energy Diagram
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FIGURE 10.28

The six spatial molecular orbitals that are obtained when the LCAO-MO is a linear combination
of six atomic orbitals, as in Equation 10.55. Only the molecular orbital of the lowest energy is
occupied in the ground electronic state of H,. The five unoccupied orbitals are called \ irtual

orbitals.
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H," Reg= Angstrom

Binding Energy  kcal/mol

He," R,=  Angstrom
Binding Energy  kcal/mol

H, Rg,=  Angstrom
Binding Energy  kcal/mol

He, R,,=
Binding Energy  Kcal m30|



Molecular Orbitals: Sum of Atomic
Orbitals Sigma and PI
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Symmetry of Orbitals Important

Allowed Combinations

(a) (b)
(c) (d)
Not Allowed Combinations: S=0, H,z=0
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Binding Energy: Orbital Interaction

« Binding depends on overlap of atomic orbitals:

Energies of atomic orbital closer the better
Consider the interaction of Orbital of atom A and B at E, and Eg

Hu—E Hyg—ES|_|a,-E fp-ES|_
H,.,-ES H,,-E| |-ES a,—E|

Assume S=0 and |E,-Eg| >> E\g




Second Row Homonuclear diatomic
Ignore olecules

1S interaction | L
Since too small ™™

T,2p, T, 2D,

N, 0, F,

o,2p

Valance
Orbitals are .-, 2,
considered

000000

0079 4.0026
lithium beryllium boron carbon nitrogen oxygen fluorine neon
| HOMO LUMO Gap < Band Gap AEEAE IR dE
Li | Be B| C|N|O| F |Ne
6.941 9.0122 10.811 12. 07 .999 008 20.180
sodium magnesium aluminium silic dhlorine argon
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Homo/Heteronuclear Diatomic
Molecules
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CO Molecule: Orbitals

In heterodiatomic molecules
electronegativity of the atoms determine the
shape of the orbital

¥Y=C +C C. and Cy, define the density on A and B
AT A BY B A B

If A Is more electronegative:




Polyatomic Molecules
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Water H,O

Gy O2s OZpT OZpy O2p, Hisy H sy
E 0O2s O2p, O2p, O2p. Hlsy Hlsg
C 0O2s -—-02%, —=02p, O2p. Hilsg Hilsy
gy 02s 02p. -—-02p, O2p, Hilsg Hisy
oy 02s —-02p, 02p, O2p, Hlsy, Hlsg
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L Inear H3 Fragment 1
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H+H-H
Fragment 2
. @ -
Fragment 2

Fragment 1 12




Hartree-Fock Roothaan Equation
Electronic Structure

Kaito Takahashi
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Born-Oppenheimer Approximation

Solve for the electron at a fixed nuclear geometry

o (rR)¥ (r:R) {—Zv%v . R)}p:'(r;R): £ (R)¥*(rR)

Calculate many nuclear geometries to obtain the potential
energy surface

N

Hyw (R)zn, (R)=Eq wy 2as, (R)

q. (R):[_liiv,uv(pe)j

2|:l Ml
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Problem To Solve with trial WF

18, L& zz, dooz 1 .
22V IR R &L, ] & | R
E.(R)¥(r;R)
vix)  wi(X) v, (X,)
Wl )= 10 0] i)
vilX,)  wi(X)) . (X )




Operators and Matrix Elements

Hamiltonian is a sum of one and two electron operators
For example hydrogen molecule

—lvf—1—1—3v§—1—1{1+1}

2 N |re| 2 ol sl [IR R
1 1
=|h +h
{” ”Hw}
1
h,h,: I,



One Electron Operator Matrix Element

(0lh,J0) = 27 [ b, (e b ()= O, s 0 )
<h(r Mo, O, (¢, )-w ()())

=27 [ dx,dx, [

Due to orthonormality of the spin orbitals last two are zero
with integration with respect to X,
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One Electron Operator 2

(0hJ0) = 27 [ ey, " (¢, 0, DN (¢, o ()
O (6 N b, O, ()
= 2 [y, (¢ (b (s + 27 [, (x, (e, o, (¢, o,
=2_1(<Wih%>+<w,- W1>)

h
<O‘h2‘0> = 21(<wi hiy. > + <wj hiw | >)




Two Electron Operator Matrix Element

<o

0> = 2_1_” dx,dx, (l//i (X1 )l//j (Xz )_ Wi (X1 )Wi (Xz ))*

X ‘rlz‘_l(wi (Xl)‘//j (x,)- W (%, i (x, ))
=27 [ dx,dx, [

-1
|
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Two Electron Operator 2

0) = [l ey G v G )
— VY ( X4 j Zxrlz‘_ll//j(xl)l//i(XZ)]
= (ij 1ij)—(ij | ji)
<ij |k|>:<ji | |k>:<k||ij>*:<|k | ji>*
Symbols physics people use: (ij||k1) = (ij | k)= ij | k)
Symbols chemistry people use:

i 1] = Gk 1 1) = [[ cxadix, " Oc o, Oc il w0, o ()

So the expectation value of the hamiltonian with the
Slater determinant for two electron system is

&

[
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Expectation Value of Slater Det

vi(X)  wi(X) e, . (x)
1 |wi(X)  wi(%) e, .y (x,)

‘WlWZ"'l//n>:ﬁ

For one electron operators we consider the sum of each
electron, for two electron operators the sum of pairs of

electrons ) )
1 1

_|_
R Jr,| ]

two electron system Hamiltonian was| h, +h, +

n
one electron operators for n electron system Z h
=1
n n 1
two electron operator for n electron system sz

=1 j=#i 21



Expectation of One Electron
Operator of Slater Det

>h
i=1

<W//2---wn wlwz---wn> =(y o+ + vy, )

Since electron in slater determinant is indistinguishable we
consider for just electron 1 and multiply by the number of
electrons

>h
i=1

<l//1w2---l//n l/fll/fz---l//n> =Ny, Wy, )

>

- <'7”i‘h1"7”i>

=1
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Expectation Value of a Two electron
Operator for Slater Det

<w1w2---wn S %wz---wn>
=1 j-
= <W1W2"'l//n ‘rlz‘_l T "13‘_1 +""rn—1n‘_l ‘//1‘//2---'7”n>

Since electron in slater determinant is indistinguishable we solve
for electron 1 and 2 and multiply by the number of pairs
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Hartree Fock Approximation 1

i=1 i1 j=i ‘ri I’J‘
vi(X)  wi(X) e, v, (x,)
_LW(XZ) Wi(Xy) e, v, (X,)
e iy K
vi(X,)  wi(X,) e, v (X.)

n

oo W) = 2 (il )+
=1

<‘”i|9’/1>:5

How do you find the best answer for the spin orbitals?

n

Z;,(<'J i)—(ij | ii))

J

EMS



Hartree Fock Approximation 2

Functional minimization with constraint

Functional derivative with respect to change of spin orbital
. = v, +ow. should be zero

3ty + 0w 1) - Sl f) = 53(p ) = 0

Swilv)=(wilv)+(yi 6w,
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Hartree Fock Approximation 3
5<w1w2---l//n\|4O\wll//z---wn>=i((?w-\hl\w-}+Zn:<t//-\h1\5t//i>

%gjz”;(@nm—wnm) MCIHREHD)

+%iz::jzn;(<ij|&j>—<ij|5l>) ;JZ;(OJIIé') (ij | joi))

Remember the exchange relationship of two electron integral

(j kD ={(jillk)y=(kl|ijy*=(k | ji)*
N CIRCEIE

J

= 26



Hartree Fock Approximation 4

%i}i«” |61j) — (ij | i) =

>l 1)~ jot 1))
(<5||J|> ~(dij | ji)*)
> (a1 1) (83 | ji)*)

27

%2;(01 i) —(ij | joi))

J
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Hartree Fock Approximation 5
53w, })=5<%w2---wn\ﬁ°\%%---%>-%Zn;€ji(5<wi v,))=0

§<5V4\h1\%>+iil(<&j [ij)—(dij | ji>—8,-i<5t//i ij>)+cc:0

i: j:

iZl:_.A5‘)”i*()(1)h(r1)'7”i (Xl)dX1+Zn:Zn:jjdX dx (5 '* X ) '*(X an\_lw- (X )W'(Xz))

=l j=1

_Z”;Zn;jjdxldxz(awi*(xl) ) ()= DY e ([ 3w (v, (x, )i,

=1 = i=1 j=1
28



Coulomb and Exchange Integral

Coulomb Integral

Exchange Integral

n n n

A0 ) = 2 v+ 5 20 (1)~ i )

i= i=1 j

=252 05Ky .

Iljl

<‘//1‘//2 Wy



Hartree Fock Approximation 6
SS(ly }):g_‘lé%*(xl)|:h(r1)V/i(Xl)+Zn;('Jj(Xl)_ Kj(xl))yi(xl)_ggjil)”j(xl) dx, +cc

J

=0
Since sy, (x,) Isarbitrary [..] must be zero

Fock Operator of spin orbitals

30



Canonical Hartree Fock

Unitary Transform of the Hartree Fock occupied orbitals
Wil(xl)zzujin(Xl) 1=12,.n
j=1

U+ _ U—l

A: -
wix,) wi(x,) .. w,(x,)
‘//i(xl) WJ(Xl) ‘//n(x1) U, Uy U, Wli(xl) l//lj(xl) TR 4
pooay 2| Vi) i) () Us Uy Ug | W) w0) ey
i) 1) )\ U U e U i) v () ey




Canonical Hartree Fock

vi(x)  wi(X) e, v, (X,)
‘ 1) w(kg) v, (X,)
L iy T VR
vi(X,)  wi(X)) e v, (X,)
1
:ﬁdet(A)
W) = %det(A') . %det(AU): %det(A)det(U)
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Canonical Hartree Fock

f(xl)Wi(Xl)zzgjin(Xl) 1=12,.n
j=1
Fock Operators are invariant to unitary transformation of spin
orbitals f(x,)=f'(x,)
therefore

If we find a unitary matrix that diagonalizes € then
fix ' () =&\ v (Xl) 1=12,.n

Canonical spin orbitals are eigen function of canonical fock operator



Orbital Energy and Total Hartree
Fock Energy

h(r1)+JZi;(Jj(X1)— Kj(Xl))j|l//i (Xl): &Y (Xl) 1=12,.n
f(y,(x)=ew,(x,) i=12,..n

g .orbitalenergy &, =

Sum of orbital energy

ig Zh @;( K, )
<w1w2---wn\|4°\wlwz--- > ianXthl >+%|1;(<IJ i)~ (ij | ji))
_Zh L= ZZ(J K, ) s

=l j=1



Closed Shell Hartree Fock

Approximation
n(1)+ 23(0,06)- K, () 0) =) i=12.0m

f(r)=h(r,)+ ) (3,0¢)- K (x,))

j=1

The above equation Is based on spin orbitals assuming that we
will only consider closed shell systems with same orbital for
different spin
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Closed Shell HF Approximation
{h(a)&(zabm)—Kb<r1)>}¢a<r1)=ea¢a<n) a=12..n/2

b=1
n/2

f (rl): h(rl)"'Z(z‘Jb(rl)_ Kb(rl))

b=1

The Hartree Fock approximation energy Is

(6i6s-- Do A B o2

n/2 n/2 n/2

=22 (¢./njg.)+ 2 3. (2(ab] ab)~(ab | ba)

a=1 b=1

n/2 n/2 n/2

=2 h, +> > (23, -Ky)
a=1

a=1 b=1

Can use numerical basis to solve the HF equation.
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