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Atomic Units

For quantum systems such as electrons and molecules
It IS easier to use units that fit them=ATOMIC UNIT

Use mass of electron (not kg)

Use charge of electron (not coulomb)

Use hbar for angular momentum (not kg m? s1)
Use 4rg, for permittivity (not C? s? kgt m=3)

TABLE 9.1
Atomic Units and Their SI Equivalents

Property Atomic unit SI equivalent
Mass Mass of an electron, m, 9.1094 x 1073 kg
Charge Charge on a proton, e 1.6022:% 10~1?C
Angular momentum  Planck constant divided by 27, i 1.0546 x 1073 J-s
. dmeyh? i
Length Bohr radius, ag = i 52918 x 107!'m
mee*
4 )
. mee e’ 2 18
Energy = = Ey, 43597 x 107'°]

167 2€2h2 " dmegag
Permittivity Ky =4me, 11127 % 100%™




Proteins, Molecules

You always write where the nucleus is but you never write
the electrons or the electrons are written as a line!!!

YOU ARE ALREADY ASSUMING BORN-OPPENHEIMER
APPROXIMATION 3
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Solve the hydrogen atom
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Full Problem
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Born-Oppenheimer Approximation

In words
Mass of electron versus mass of nucleus
1 <<< 1830 (at least)
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BO Approximation in equation 1
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BO Approximation 2

(I:I — By )qj(r, R)= 0
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BO Approximation 3
U¢ H0 ElNU)é (r; R)dr]

Using Bra-Ket . F:
Notaton o (olm) = o, * () ()



BO Approximation 4
j¢:l*(rJR)(—%IZN:1ML|Vf]Z; 7. (R)p (r;R)dr
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BO Approximation 5
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BO Approximation 6

Born-Oppenheimer Approximation ignore C, -

L_%i Milvf ¥ En(R)Jzn(R)= Eono 20(R)

H (R )9, (R )= E (R )9, (riR )

Nuclear wavefunction is given by the expansion coefficient!

H NU (R)an\!yn (R): Eenu an\f\L/Jn (R>

N
L R)-[ 13 -9V R)
27T M,
The nucleus is moving in an potential that is the result of
averaging the contribution coming from the electron at a
given nuclear geometry! In essence you have separated the,,
motion of the electron and nucleus.



Separation of Variables
by Time Scale

HO(BR g (R = EL(R g, (riR )
H NU (R )ZnN,tJn (R ): E i ZnN,tJn (R )
¥(r,R)=4; (r:R)za,, (R)

Now you can say nuclear wave function on the n-th electronic state

You can write the energy of the electron as a function of the nuclear
coordinate and consider it as a potential that the nucleus feels.
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Adiabatic Approximation

Include diagonal coupling term C__

- 2j¢§'*(r; RV, ¢ (r;R)dr=0
Vi[ o (n R (rR)dr
=2[ ¢ (rR)Vigs! (riR)dr + 2 ¢ (r: R)V,42 (r;R)f dr =0

C =

nn

14



LCAO Approximation for
Diatomic Molecules

Kaito Takahashi



H,* Most Simple Diatom

First find ways to solve the electronic wave function
when given distance between to hydrogen nuclei

1., |1 1 1 . .
el v/ e $e(r;R)=E, (R)¥(r;R)
2 {IRI ra Irsl}

Solve this problem: 1. Use exact solution
2. Use




Atomic Orbital Review

TABLE 7.2

The Hydrogen-like Radial Wave Functions, R,,(r), for

n=12and 32

yaeny
I fZN*
R, (r) = (—) P84
| V3 \24q
R : ( Z)" 27 — 18p + 2p%)e "/
sor)=— | — (27 — 18p + 2p“)eP/°
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4 7 3/2 o
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a. The quantity Z is the nuclear charge, and p = Zr/a,, where
ay is the Bohr radius.

Table 9.3 The spherical harmonics
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LCAO

To make the molecular orbital (the electronic wavefunction for
the molecule) let just add up each atomic orbital (electronic wave
function for the atoms making the molecule)
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Variational Theory 1

E = <E

exact trial —

JZci*¢i*I3Ich¢jdr > > ¢ *Hc,
i=1 j=1 _ 1]

l//trial = ici¢i Etrial = n n *
= _[Zci * *ch¢jdf Z;Ci i
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Variational Theory 2
ZZC‘*C (H — EyiaSi ) 0

Take derivative with ¢;*

Take derivative with C;

Due to stationary condition of the solution

aEtrial — O aEtrial — O
oc, oc,
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Variational Theory
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Overlap Integral
S(R)=(A|B)=(B[A)

M
A B

S(R)= eR[1+ R +F§j



Atomic Integral
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Exchange Integral
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Solve Secular Equation
H(R)AA_E(R) H(R)AB_E(R)S
H(R)BA_E(R)S H(R)BB_E(R)




Bonding and Antibonding Orbital

Y

A —

(/{,i l/ll
FIGURE 10.14
Surface plots of the molecular orbitals v, (a bonding orbital) and v (an antibonding orbital)

and their squares.



Electron Density Difference

0-

FIGURE 10.15

Surface plots of §, and §_, the difference between the electron density in which the electron is
delocalized over the two nuclei and the electron density in which the electron is localized on
one of the nuclei.



R Dependence of Matrix Elements
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Dotted lines are the potential energy curve




Energy Lowering and Rising

Haa
Hag

4 EE,
-1+1.0

At equilibrium of E,
H,,,H,;<0,S>0

s Lowering=H,,—E, Rsing =E —H,,

H,,—H
RQOZHAA—HAA+HAB _ aa B,
] 1+S 1-3S
- SH,,—H,g _SHAA_HAB
4-05 N 1+S 1-S

L.1.0

If S=0 then AE=0, S>0 then AE>O0 rising is more than lowering!



Bonding Orbital Compare With Exact

E(eV]A

Fig. 2.30 Potential curve of the H” ground state as computed
with a) simple LCAOQO, b) optimized parameter 1, ¢) polarization
term, and d) exact treatment.



Antibonding Oribital

AE_JE,
4

[.0

Exact
0.5

IGURE 10.13

comparison of the energy AE_(R) of the first excited state of Hy calculated from
quation 10.23 with the exact energy.



Addition of Orbitals
w(r)= Y Cu (1)

Adding in the contribution from 2S5
W7 (r;R)=C,| Als)+C,|Bls)+C,|A2s)+ C,|B2s)

n

= 0.7071(| Als) +| B1s))+0.00145(| A2s) + | B2s))
Adding in the contribution from 2p,
¥ (r;R)=C,| Als)+C,|Bls)+C,| A2p,)+C,|B2p,)

n

= C,(| ALs)+0.1380| ALp, ))+ C, (| BLs)+0.1380| BLp, )



Additional Orbitals

cesults of Various Calculations of the Ground-State Electronic Energy ofll; R

¢ Enin/En  Req/ag
Is(¢ = 1.000) —0.564 83 2.49
Is(¢ = 1.238) —0.586 51 2.00
Is (¢ = 1.000) + a2p.(¢ = 1.000) —0.56591 2.00
Is(¢ = 1.247) + b2p, (¢ = 1.247) —0.599 07 2.00
Is (¢ = 1.2458) + c2p.(¢ = 1.4224) —0.600 36 2.00
Is(¢ = 1.244) + ¢;2p,(¢ = 1.152) + ¢,3d 2(¢ = 1.333)®  —0.6020 2.00
Exact® —0.602 64 2.00

The molecular orbitals are of the form Y, = cpp5 + cpdp, Where ¢ is given in the table.
-Mulliken, R. S., Ermler, W. C. Diatomic Molecules. Academic Press: New York, 1977.
Bates, D. R., Ledsham, K., Stewart, A. L. Wave Functions of the Hydrogen Molecular lon.
hilos. Trans. Roy. Soc. London, Ser. A. 246, 215 (1953).



Basis Set

e If you use more atomic orbitals to define the
molecular orbital usually the energy gets
closer to the exact solution

Using a bigger basis set to describe the system

* However bigger basis set you need more
time to calculate.



Diatomic Molecules



H®? (r,r,;R)
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Above equation Is two H2+ electrons with electron electron

repulsion
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Spin Orbital and Spacial Orbitals

When you consider more than one electron you have to

consider not only the spacial coordinate r but also the spin
angular momentum s and the Fermi principle:
Define x as the summed coordinate for r and s

a(s)
Vi (X) =V, (r’ S) =9, (r)ﬂ(s)

Hartree Product P ™" (Xl, X, ) =, (Xl)l//j (Xz)



Slater Determinant
Y (x,, X, )= ( (o  0,) =5 (x, i ()
LP(X X) %( ( ) (X )_Wj(XZ)Wi(Xl)):_LP(Xl’XZ)

Asymmetric wavefunction after exchange of electron coordinate

Generalization for n electron system: Slater Determinant

4 (Xl) Wj(xl) --------------------- Wk(xl)
T
vi(X,) Wi (X)) v, ()




What Happens If we use direct
product of H,* solutions

1 a(l)(+>1 ,3(1)(+>1
Yool = la@)+), ),

“[4)]+),| 75 (@@p(2)- a(2)p0)

Hamiltonian does not include any spin terms so we could obtain
the R dependence of the energy using only the spatial part of the
electronic wavefunction



Potential Energy Curve

2<++1<+

N

H

+)J+),(R)

5 Incorrect Dissociation!

—1).9

LA

FIGURE 10.23
Both the optimized (orange) and the ¢ = 1 (black) molecular orbital energies calculated with
Equation 10.41. In neither case does the energy go to the correct limit of —1 E, as R — oc.



What 1s the Problem of incorrect

dissoclation
+)]+), = (| Als), +|B1s), Jx (| Ats), +|B1s),

= |Als) |Als) +|Bls) |Bls)+|Als) |Bls) +|Bls) |Als),

First two terms have 2 electrons on one of the atoms: IONIC

Last two terms have one electrons on each one of the atoms:
Valance Bond

£)l+), = [1)+[VB)



Solution: Configuration Interaction

Two 1S orbitals can make T\WO molecular orbitals
Why not use the two and make combinations

(1)), 1x> (1)), ﬂ(lH
WCer, s %2, se)),
‘P1>~\++>(aﬁ—ﬂa) P, ) = |——)epf - ﬂa)

lal)s), alt)-), e, )
B=Cen), e T2, se)),
#)~ (¢ )| )a W) x|+ Jap-|-+)pa

|y, el |y, s,
=G, a2 T, se)),
W)~ |+-)Ba—|-+)ap W)~ (+-)-|-+))BB



Symmetry of Spacial Orbitals

W) = |+ +)(af - pa) '¥,) =]~ —)ap - for)
¥,) ~ (=) ~|=+) b W)~ |+ —)af—|-+) pa
Ws) x|+ —)Ba—|-+)ap ) ~ (+-)—[-+))88

If you exchange the position/spin of electron 1 and electron 2
'¥,)and |V, ) stay the same sign

¥, )and |¥,)and | ¥, )and | ¥, ) invert the same sign

Hamiltonian is invariant over exchange of electron
so only ¥, mix with ¥,
1 1 1 1 1 1 1 1

H=|-SVi+-2Vi+| -~y
2 R ] Tl Tl al |




Solution: Configuration Interaction

Two 1S orbitals can make T\WO molecular orbitals
Why not use the two and make combinations

o)), 1X +), | 2@, ﬁ(lH
BCo), sl e, se),
\Pl>~\++>(aﬁ—ﬂa) '\¥,) ~ |~ =)o - pa)
Configuration 1: two Configuration 2: two

electron in bonding orbital electron in antibonding orbital



Configuration Interaction

W, )=C,|¥,)+C,|¥,)=C|++)+C,|——)

(| Axs), +|Bs), Jx (| ALs), +|B1s), )
A1s),| Als), +[B1s),[BL), +| Als), [Bis), + |Bis) Al),

Q A15>1 _‘ BlS>1)>< q A18>2 _‘ B].S>2)
‘ AlS>1‘ AlS>2 +‘ BlS>1‘ BlS>2 _‘ A].S>1‘ BlS>2 _‘ Bls>1‘ A15>2

++)

)

I U I Q



H2 Potential Curve Revisited

6 8
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FIGURE 10.25

The configuration-interaction energy E(; of the ground-state energy of H, for ¢ = 1 (dashed
curve) and for an optimized value of ¢ (dotted curve) plotted against R. The “exact” results of
Kolos and Wolniewicz (solid curve) are shown for comparison.
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R Dependence of Expanstion
Coefficients

R/a,

N

6 FIGURE 10.27
A plot of ¢; and ¢, for the optimized value
of ¢ in Equation 10.53 against R. Note that

€L~ | / \2 and Cy =¥ l \2 48 R — oo



Use of more orbitals
+)~ C,(|Als)+a| Alp,))+ C,(|B1s)+ «|Blp,))

TABLE 10.4
Results of Various Calculations of the Ground-State Energy of H,

Wave function ¢ Enin/En  Regq/ap
MO  Minimal basis set 1.000 —1.0991 1.603
MO  Minimal basis set 1.193 —1.1282 1.385
Hartree—Fock ® —1.1336 1.400
Cl Minimal basis set 1.000 —1.1187 .668
Cl Minimal basis set 1.194 —1.1479 1.430
Cl Minimal basis set with polarization® —1.1514 1.40
Cl  Five terms”® —1.1672  1.40
ClI 33 terms* —1.1735 1.40
Trial function with > 13 terms ¢ —1.1735 1.40
Trial function with r;, with 100 terms® —1.1744 1.401

Experimental ' —1.174 1.401




