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Atomic Units 
For quantum systems such as electrons and molecules 

it is easier to use units that fit them=ATOMIC UNIT 

Use mass of electron (not kg) 

Use charge of electron (not coulomb) 

Use hbar for angular momentum (not  kg m2 s-1) 

Use 4pe0 for permittivity (not C2 s2 kg-1 m-3) 
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Proteins, Molecules 

You always write where the nucleus is but you never write 

the electrons or the electrons are written as a line!!! 

YOU ARE ALREADY ASSUMING BORN-OPPENHEIMER  

APPROXIMATION 

H2 

H2O 
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Solve the hydrogen atom 
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Full Problem 
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Born-Oppenheimer Approximation 

in words 
Mass of electron versus mass of nucleus 

 1    <<< 1830 (at least)  

 Rr ;e l

n
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BO Approximation in equation 1 
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ＢO Approximation 2 
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ＢO Approximation 3 
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ＢO Approximation 4 
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BO Approximation 5 
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BO Approximation 6 
Born-Oppenheimer Approximation ignore Cnm 
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Nuclear wavefunction is given by the expansion coefficient! 
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The nucleus is moving in an potential that is the result of 

averaging the contribution coming from the electron at a 

given nuclear geometry! In essence you have separated the 

motion of the electron and nucleus.   
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Separation of Variables  

by Time Scale 
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Now you can say nuclear wave function on the n-th electronic state 

You can write the energy of the electron as a function of the nuclear 

coordinate and consider it as a potential that the nucleus feels.   
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Adiabatic Approximation 
Include diagonal coupling term Cnn 

I

N

I

I

I

N

I

I

I

n n n
M

nn
M

nC  
 11

2 1

2

11

2

1

   

   

   

         0;;2;;2     

;;

0;;2        

;;1

2*2*

*2

*

*

















rRrRrrRrRr

rRrRr

rRrRr

rRrRr

dd

d

d

dnnnn

el

nI

el

n

el

nI

el

n

el

n

el

nI

el

nI

el

n

el

n

el

nII









nnC

14 



LCAO Approximation for 

Diatomic Molecules 

Kaito Takahashi 



H2
+ Most Simple Diatom 

HA HB 
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Solve this problem: 1. Use exact solution 

   2. Use 

    

First find ways to solve the electronic wave function 

when given distance between to hydrogen nuclei 



Atomic Orbital Review 
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LCAO 
To make the molecular orbital (the electronic wavefunction for 

the molecule) let just add up each atomic orbital (electronic wave 

function for the atoms making the molecule) 

HA HB 
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Variational Theory 2 
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Overlap Integral  
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Atomic Integral 
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Exchange Integral 
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Solve Secular Equation 
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Bonding and Antibonding Orbital 



Electron Density Difference 



R Dependence of Matrix Elements  

Dotted lines are the potential energy curve 



Energy Lowering and Rising 
At equilibrium of E+ 
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If S=0 then DE=0, S>0 then DE>0 rising is more than lowering! 



Bonding Orbital Compare With Exact 



Antibonding Oribital  



Addition of Orbitals 
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Additional Orbitals 



Basis Set 

• If you use more atomic orbitals to define the 

molecular orbital usually the energy gets 

closer to the exact solution 

 

Using a bigger basis set to describe the system 

 

• However bigger basis set you need more 

time to calculate.   



Diatomic Molecules 
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Above equation is two H2+ electrons with electron electron 

repulsion  



Spin Orbital and Spacial Orbitals 
When you consider more than one electron you have to 

consider not only the spacial coordinate r but also the spin 

angular momentum s and the Fermi principle: 

Define x as the summed coordinate for r and s 
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Slater Determinant 
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Asymmetric wavefunction after exchange of electron coordinate 

Generalization for n electron system: Slater Determinant 
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What Happens if we use direct 

product of H2
+ solutions 
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Hamiltonian does not include any spin terms so we could obtain 

the R dependence of the energy using only the spatial part of the 

electronic wavefunction 



Potential Energy Curve 
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Incorrect Dissociation! 



What is the Problem of incorrect 

dissociation 
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First two terms have 2 electrons on one of the atoms: IONIC 
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Last two terms have one electrons on each one of the atoms:  
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Solution: Configuration Interaction 
Two 1S orbitals can make TWO molecular orbitals 

Why not use the two and make combinations 

   
   

   
   

   





















21

22

11
22

22

11
11

                          

22

11
             

22

11
CC

   
   

   
   

  





















43

22

11
44

22

11
33

                      

22

11
              

22

11
CC

   
   

   
   

 





















65

22

11
66

22

11
55

                      

22

11
               

22

11
CC



Symmetry of Spacial Orbitals 
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If you exchange the position/spin of electron 1 and electron 2 
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Hamiltonian is invariant over exchange of electron  

so only 2 mix with 1 



Solution: Configuration Interaction 
Two 1S orbitals can make TWO molecular orbitals 

Why not use the two and make combinations 
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Configuration 1: two  

electron in bonding orbital 

Configuration 2: two  

electron in antibonding orbital 



Configuration Interaction 
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H2 Potential Curve Revisited 



R Dependence of Expanstion 

Coefficients 



Use of more orbitals 
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