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Definition of Nanomaterial

Original :  “quantum size effect” where the electronic properties of solids are
altered with great reductions in particle size

( New)

On 18 October 2011, the European Commission adopted the following definition of a nanomaterial:ll

A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate
or as an agglomerate and where, for 50% or more of the particles in the number size distribution,

one or more external dimensions is in the size range 1 nm — 100 nm. I
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Quantum confinement effect
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Size-dependent optical properties of CdSe QDs

Band gaps change with their average sizes
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Chen, et. al. Langmuir15, 6845 (1999)



Lotus Effect

Lotus

Nano array on glass substrate

Park, K. C. et. al., ACS Nano 2012, in ASAP
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Protection from the Inside Out.

With WaterBlock™, you can make a I h
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http://www.youtube.com/watch?v=zjsWFvUkh7M



Photocatylysts using Nanomaterials

 Bulk Ti0, V.S. Ti0, nanorods/nanoparticles
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http://www.35664.net/new/pu inc/tag.php?-name=
%E4%B8%93%E9%A2%98& page=14

Journal of American Chemical Society, 133,11614,
(2011)



Photocatalytic effect
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How to make Nanomaterials ??

Top - down (Physical method): 1ithography
Advantage: Easily controlled
Disadvantage: Expensive

I Prepare Wafer

Coat with
S Photoresist

http://www.beilstein-
journals.org/bjnano/single/articleFull
Text.htm?publicld=2190-4286-2-50
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Bottom up (Chemical Method)

Chemico-physical
processes

Liquid phase

Precipitation processes

Aerosol processes

eg.

Sol-gel processes flame hydrolysis,

spray hydrolysis

Hydro-thermal processes
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Atomic Foundry

Difﬁ rent shapes of CdSe‘
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How to observe Nanomaterials??

Transmission electron microscopy(TEM)

GaP and GaN
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Lin, H. M. et. al, Nano Lett,\ol. 3, No. 4, 2003

Kinder, E. et. al., L Am. Chem. Soc. 2011, 133, 20488-20499



3D STEM Tomography images of P3HT/TiO, hybrids

TiO, nano rod TiO, nano particle
4nm x 20nm >Nm x onm

STEM-HAADF electron tomography (2 A resolution)

Well-dispersed




3D STEM Tomography images of P3HT/TiO, hybrids

TiO, nano rod TiO, nano particle
4nm x 20nm >Nm x onm

Phase separated domain

Journal of American Chemical Society, 133,11614, (2011)



3D STEM Tomography images of P3HT/TiO, hybrids

TiO, nano rod TiO, nano particle
4nm x 20nm >Nm x onm

Phase separated domain Well-dispersed



3D scanning transmission electron microscopy (STEM)
Electron tomography of P3HT/TiO, hybrids
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STEM-HAADF electron tomography
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Scanning electron microscopy(STM)

(Quantum tunneling effct )
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http://www.personal.psu.edu/ewh10/ResearchBackground.ht

Silicon atoms on a surface

http://www.exo.net/~pauld/workshops/Atoms.html



Atomic Force Microscopy (AFM)

single wall carbon nanotube
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Optical and electronic applications of
nanomaterials



OD: nanoparticles




States

Density of
states

Bulk crystal

3d
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Free electron model in 3D



Two-dimensional system
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1-D confinement, 2-D free electron
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0-D system (Quantum dot)

z r ;{Z (k,=0, k),:(), k,=0) bulk semiconductor quantum dot semiconductor
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Exciton
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Binding energy and Bohr’s radius
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> tightly bound exciton £, >0.1 eV



Optical absorption and excitons in
semiconductor quantum well

GaAs quantum wells
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Absorption coefficient

Absorption coefficient (105 m™')
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Size-dependent optical properties of CdSe QDs

Band gaps change with their average sizes
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Surface plasmonic effect

Gold nanoparticcels
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Localized Surface Plasmon (LSP

External EM field E

s

Excited free electron density oscillation - LSP

. When particle size @ € 4 — dipole oscillation
Metal NP Resonant at specific frequency - LSPR

» Resonant frequency w, varied with:
metals, morphology, and dielectric environment

Normalized Extinction
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—
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T. R. Jensen et al. JPCB, 104, 10549 (2000)
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Different Geometries (Gold nanorods)

The colors of gold nanorods

AR 1,94 2,35 2,48 3,08 3,21

Absorbancia
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J. Pérez-Juste et al., Appl. Surf. Sci. (2004) . (nm)

Localized plasmons and plasmons in nanoparticles ORC Lecture — Southampton, January 17, 2011



Surface plasma enhanced Raman (SERS)

Dr. W.L.Wang,
IAMS, Academic Sinica
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Adv. Mater, 2006, 18, 491



(Gas sensor

For detecting Combustible, flammable
and toxic gases, and oxygen depletion.

Portable gas detector




Classification of gas sensor

® Thermal gas sensor: ® Field effect transistor gas sensor
flammable gas, CH,, Cl,,
H,, CO
g-alumina Vg
support Y
Platinum wire Pd/Th O, catalyst ol C[)
| T =n Pd L
] SiO, Hﬂ Vo
p-Si
i 77i77
Ve -

Schematic of catalytic sensor Schematic of MOS-FET sensor



Nanomaterials on gas sensor application

Fabricated by carbon nanotube
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A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,”
Nature, vol. 424, no. 6945, pp. 171-174, 2003.



Nanomaterials on gas sensor application
Fabricated by Graphene
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graphene is an exceptionally low-noise material electronically for

chemical detectors.

F. SCHEDIN, et. al., nature materials 2006, 6, 652



Nanomaterials on gas sensor application

Fabricated by Silicon nanowire

T 1 1
AVG=0AY e before exposure

----- w/ NH; vapor -

o)

Vg (V)
Variation in Iy vs Vg for a SINW array
exposed to ammonia NH; vapor.

Dense arrays of silicon nanowires over large
areas created by nanoimprint lithography

Talin, A. A., Appl. Phys. Lett. 2006, 89, 153102

the shifted threshold voltage of the field-effect transistor
— a signature of charge transfer between the analytes and the nanowires.



Nanomaterials on gas sensor application

Fabricated by WO, nanowire
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highly sensitive to NO, (50 ppb)

Sensing response curves
of the sensor.

Cao, B. et. al., J. Mater. Chem., 2009, 19, 2323-2327



Quantum dot barcodes for multiplexed immunosensing in a
microfluidic device with external optical detection.

QDs with their corresponding surface
conjugated antigens and fluorescence spectra

A Nanotechnology -
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Using reduced graphene oxide FET as detecting hormonal catecholamine
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