CMS IlI-7: structure optimization

Horng-Tay Jeng
(559 %)

Institute of Physics, Academia Sinica



Atomic geometry relaxation

Total energy and forces on atoms
Hellmann-Feynman theory

Steepest decent structure optimization
algorithm

Conjugate gradient structure
optimization algorithm



Total energy calculation
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Self-consistent field (SCF)
calculations of total energy

e Vy(r) and Vxe(r) depend on ri(r)
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SCF on structure optimization
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Stress and strain

e [he concept of forces s
. f
straightforward, but you can also take h'= (I+¢€)h
derivatives with respect to the crystal

unit cell
e | he stress tensor o is related to the

e The application of a strain changes strain tensor €:

the shape of the unit cell
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e |f we write the three unit cell vectors
a.b.c as columns of a matrix h the where £ = a+«b X ¢ is the volume
shape change is described by: of the unit cell






Hellman Feynman theorem

o Classically, the force F acting on ae The Hellman-Feynman Theorem:
particle at R is given by the derivative

of the potential energy: % = g§|H|l]2'; + lIJ|ﬁH|II' —
(V|H|YY) =F ;. A:coordination of
F=-VrU(R) a chosen atom
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mechanical equivalent to be: m | |Lp + mem]}mh
F = —-Vr(E) where
. e . 88 = (01981
= (U|H|T), if |¥) are normalised
i 2
He V21 (D) +V, (P +V. )

2m



Structure optimization

e Assume  that  electrons adapt a classic optimisation problem
instantaneously to the jonic

configuration e The phase space grows with the

— this is the Born-Oppenheimer SYstem size
approximation
e [here are many local minima
e The ionic positions can be considered ~ (corresponding to meta-stable
to be parameters, the total energy is Structures)
a function of the ionic coordinates

® In general, we must start with a good

e Finding the ground-state structures is guess for the structure (from exp.)
and go forwards to

the optimized structure
according to HF forces
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Concluding remarks

STEEPEST DESCENTS

¢ Advantages:

— simple to implement, and robust
— reliable — will find the minima

e This is the simplest approach: eventually

— take a downhill step along the local
steepest gradient, and a trial step ® Disadvantages:
length
— use line minimisation to find the — very slow to converge
optimal step length — can get stuck in a local minima



CONJUCGATE (GRADIENTS

e Advantages:

— rapid convergence — in a quadratic
energy landscape,

— low storage requirements
e This improves on steepest descents:

— the gradient is constructed to be * Disadvantages:

conjugate to all previous directions  — more complex to implement than
— a quick line minimization using SD
gradient Is performed
— can get stuck in a local minima



Low
temperature
Magnetite
Fe304

Density of states (state/eV/f.u.)
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FIG. 2. Spin-resolved density of states of Fe;Oy4 in low-T mono-
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FIG. 4. Spin-resolved density of states of Fe;0, in low-T Pmca
(a, b), Pmc2, (c, d), and Cc (e, f) lattices from GGA+U and



Lattice relaxation and charge

redistribution in Cc Fe,O, at z=2/8

unrelaxed dE=0.15eV/fu relaxed
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Working list

« Calculate optimized lattice
structure of nonmagnetic
semiconductor Si(Dia)

o Calculate optimized lattice
structure of magnetic metal
Fe(BCC)



Lattice optimization of Si(Dia)

INCARGSCE):

SYSTEM = S1 Diamond

DOS related values
ISMEAR = -5
RWIGS = 1.3
NSW =50
[SIF=3
[BRION =2
POTIM = 0.1

CONTCAR: The relaxed lattice

1. To be compared with POSCAR
2. mv CONTCAR POSCAR and rerun
VASP if the ionic step is not converged

Maximum number of ionic step

Fully relaxation

lonic relaxation method (conjugate gradient)
Step size



Spin polarized lattice
optimization of Fe(BCC)

INCAR:

SYSTEM = Fe BCC

DOS related values
ISMEAR = -5
ISPIN =2
MAGMOM =5
GGA =91

RWIGS = 1.3
NSW = 50

ISIF =3

IBRION = 2
POTIM =0.1

figure out the format of DOSCAR

OSZICAR contains the total
energy of each ionic step

Maximum number of ionic step

Fully relaxation

lonic relaxation method (conjugate gradient)
Step size



ISIF: controls whether the stress tensor is calculated

ISIF calculate
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IBRION :determines how the ions are updated and moved

-1 ions are not move
0 ab-initio MD

1 quasi-Newton

2 CG

IBRION =+

NSW :defines the number of ionic steps
(max.)

EDIFFG: defines the break condition for the ionic relaxation loop

EDIFF: defines the break condition for the electronic loop

Default: EDIFF=10"-4, EDIFFG=10"-3



Output of relaxation calculation

OSZICAR:

N E dE d eps ncg rms rms(c)
DAV: 1 -0.118903853891E+02 -0.11890E+02 -0.51514E-08 544 0.157E-03 0.679E-05
DAV: 2 -0.118903853899E+02 -0.84432E-09 -0.67687E-09 520 0.587E-04

1 F=-.11890385E+02 EO=-.11890385E+02 d E =-.118904E+02
N E dE d eps ncg rms rms(c)
DAV: 1 -0.118916612818E+02 -0.11892E+02 -0.44662E-03 1216 0.374E-01 0.432E-02
DAV: 2 -0.118915710975E+02 0.90184E-04 -0.86588E-05 1048 0.587E-02

Electronic step
D F= - 11891571E+02 EQ= - 11891571F+02 d E =-.118571E-02 _—

N E dE d eps ncg  rms rms(c)

DAV: 1 -0.118932471685E+02 -0.11893E+02 -0.36655E-02 1240 0.108E+00 0.130E-0]

DAV: 2 -0.118924300860E+02 0.81708E-03 -0.75583E-04 1264 0.170E-01 0.720E-02

DAV: 3 -0.118920526488E+02 0.37744E-03 -0.87419E-04 1176 0.148E-01 0.103E-02

DAV: 4 -0.118920490217E+02 0.36270E-05 -0.76967E-06 528 0.252E-02 ~

3 F=-.11892049E+02 EO= -.11892049E+02 d E =-.166363E-02 lonic step
%grep EO OSZICAR

1 F=-.11890385E+02 EO= -.11890385E+02 d E =-.118904E+02
2 F=-.11891571E+02 EO=-.11891571E+02 d E =-.118571E-02
3 F=-.11892049E+02 EO= -.11892049E+02 d E =-.166363E-02



CONTCAR: optimized lattice structure

S1 Diamond
5.375700000000000
0.0000000000000000  0.5029912498056555  0.5029912498056555
0.5029912498056555  0.0000000000000000  0.5029912498056555
0.5029912498056555  0.5029912498056555  0.0000000000000000
2
Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.2500000000000000 0.2500000000000000 0.2500000000000000

0.00000000E+00 0.00000000E+00  0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00



OUTCAR:

Initial atomic positions

POSITION TOTAL-FORCE (eV/Angst)

0.00000  0.00000  0.00000 0.000000  0.000000  0.000000
1.35197  1.35197  1.35197 0.000000  0.000000  0.000000

total drift: 0.000000  0.000000  0.000000

POSITION TOTAL-FORCE (eV/Angst)

0.00000  0.00000  0.00000 0.000000  0.000000  0.000000
1.34393  1.34393  1.34393 0.000000  0.000000  0.000000

total drift: 0.000000  0.000000  0.000000

optimized atomic positions



Homework

please Emaill to jeng@phys.sinica.edu.tw

 Compare the previously obtained LDA DOS
and BS with the optimized DOS and BS of
Si(Dia) and C(Dia)

 Compare the previously obtained GGA DOS

and BS with the optimized DOS and BS of
Fe(BCC), Co(HCP), and Ni(FCC)

e COom
exp.
e COom

pare the optimized lattice constant with
_attice constant of the above 5 cases

nare the magnetic moment of exp.

lattice and optimized lattice of the last 3
cases



