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Insufficiencies of LDA (LDA, LSDA, GGA)

LD

A Is successful for lots of systems such

as metallic or weakly correlated materials

BL

T LDA has some problems:

Ga
PR
Spi
PR

ns too small or no gap,
B44, 943 (1991)

n and orbital moment too small,
B44, 943 (1991)

Especially for transition metal oxides or
strongly correlated systems



TABLE II. Experimental (expt) and calculated (LDA + U) spin moments (m, in p3) and energy gaps
(E, in eV) of the late-3d-transition-metal monoxides. For comparison, we also show these quantities as
calculated from LSDA (Ref. 1).

Eisp Eispiu E ot mMisp Mysp+ U M expt
CaCuO, 0.0 2.1 1.5* 0.0 0.66 0.51°
CuO 0.0 1.9 1.4° 0.0 0.74 0.65¢
NiO 0.2 3.1 4.354.0 1.0 1.59 1.77,°1.64,"1.90f
CoOQ 0.0 3.2 2.40% 2.3 2.63(3.60) 3.35,'3.8™
FeO 0.0 3.2 2.4" 3.4 3.62(4.59) 3.32™
MnO 0.8 3.5 3.6-3.8° 4.4 4.61 4.79,%4,58'
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Beyond LDA

Self-interaction correction (SIC)
PRB23(1981)5048, PRL65(1990)1148

Optimized effective potential method (OEP)
Hartree-Fock (HF) method, PRB48(1993)5058

GW approximation (GWA), PRB46(1992)13051,
PRL74(1995)3221

Time-dependent density functional theory
(TDDFT)

Dynamical mean field theory (DMFT)
Quantum Monte-Carlo method (QMC)

LDA+Hubbard U (LDA+U) method,
PRB44(1991)943, PRB48(1993)16929



Local density approximation (LDA)
Kohn-Sham scheme PR140(1965)A1133
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Self-interaction correction (SIC)
Perdew and Zunger, PRB23(1981)5048
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Basic i1dea of LDA+U

PRB 44 (1991) 943, PRB 48 (1993) 169

* Delocalized s and p electrons : LDA

» Localized (strongly correlated) d or f
electrons : +U
using on-site d-d Coulomb interaction
(Hubbard-like term)
U i.nn,
Instead of averaged Coulomb energy
UN(N—1)/2



When to use LDA+U

Systems that LDA gives bad results
Narrow band materials : U=W
Localized electron systems
Transition-metal oxides

Strongly correlated materials

Insulators (for semiconductors: use GWA)



Where to find U and J

RB 44 (1991) 943 : 3d atoms

RB 50 (1994) 16861 : 3d, 4d, 5d atoms
RB 58 (1998) 1201 : 3d atoms

RB 44 (1991) 13319 : Fe(3d)

RB 54 (1996) 4387 : Fe(3d)

RL 80 (1998) 4305 : Cr(3d)

RB 58 (1998) 9752 : Yb(4f)




Notes on using LDA+U

The magnitude of U is difficult to calculate and
measure accurately, the deviation could be
typically as large as £1eV

For the same element, U depends also on the
lonicity In different compounds: the higher
lonicity, the larger U

One thus varies U in a reasonable range to obtain
better results

One might varies U in a much larger range to see
the effect of U (qualitatively)

— Self-consistent LDA+U (much more difficult)



Various LDA+U methods

Hubbard model in mean field approx. (HMF)
LDA+U : PRB 44 (1991) 943 (WIEN2K, LMTOQO)

Approximate self-interaction correction (SIC)
LDA+U : PRB 48 (1993) 16929 (WIEN2K)

Around the mean field (AMF) LDA+U :
PRB 49 (1994) 14211 (WIEN2K)

Rotationally invariant LDA+U
PRB 52 (1995) R5468 ( , LMTO)

Simplified rotationally invariant LDA+U :
PRB 57 (1998) 1505 ( , LMTO)




Rotationally invariant LDA+U: PRB52(1995)R5468
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Applications of LDA+U on
transition-metal oxides

Rutile : CrO2 (FP-LMTO)
Pyrochlore : Cd2Re207 (VASP)

Double perovskite : Sr2FeMoO6,
Sr2FeRe06, Sr2CrWO06 (FP-LMTO)

Perovskite ruthenate SrRuO3 (VASP)

Cubic inverse spinel : high-temperature
magnetite (Fe304) (FP-LMTO)

_ow-temperature charge-orbital ordering
Fe304 (VASP)



Rutile CrO2

Half-metal, moment=2 ¢ ¢
Lattice type : bct

6 atoms In bct unit cell

Space group : P4,/mnm
a=4.419A, c=2.912A, u=0.303
lonic model : Cr*4(3d?), O-%(2p°®)
U=3.0eV,J]=0.87¢eV



Rutile structure
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FIG. 4. UPS (Ahv=40.8 eV) and BIS (hv=1486.6 ¢V) spectra
(solid curves) compared with theoretical spectra deduced from the
LSDA (Ref. 3) and LSDA+ U (Ref. 8) calculations (dashed

curves).



Spin and orbital magnetic moments of CrO2
PRB66(2002)174440

(Ug) |Spin moment Orbital moment

Cr |O Total |Cr O

LDA 1.89 |-0.04212.00 (-0.037|-0.0011

LDA+U 11.99 [-0.079 |2.00 [-0.051|-0.0025

EXp. 2 -0.05™ |-0.003"

*D. J. Huang et al, SRRC




Rutile CrO2

 LDA+U enhances the gap and the exchange
splitting at the Fermi level

 LDA+U also gives larger spin and orbital
magnetic moment

 U~W, orbital moment quenched,

—stronger hybridization, stronger crystal
field, — close to itinerant picture



Pyrochlore Cd2Re207

Lattice type : fcc

88 atoms In cubic unit cell

Space group : Fd3m

a =10.219A, x=0.316

lonic model: Cd*™2(4d'%), Re™>(5d?), O-2%(2p°)
U(Cd) =5.5¢eV, U(Re) =3.0eV

J =0 eV (no spin moment)



Pyrochlore structure




I. Phys.: Condens. Matter 21 (2009} 195602
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Figure 2. (a) PES [26] and O 1s XAS (this work) spectra of Cd;Re,0;. The Fermi level of XAS is at 529.4 eV (reflection point method).

(b) Total density of states from GGA (b) and GGA + U (c¢). The dark area in (b) and (c) are the contributions from O p states.



Pyrochlore Cd2Re207

LDA unoccupied DOS agree well with XAS data
from K. D. Tsuel, SRRC

Cd-4d band from LDA is ~3 eV higher than photo
emission spectrum (PRB66(2002)1251)

Cd-4d band from LDA+U agree well with photo
emission spectrum (PRB66(2002)1251)

Cd-4d orbital is close to localized electron picture,
whereas the other orbitals are more or less
Iitinerant



Double perovskites
Sr2FeMo06, Sr2FeReO6, Sr2CrwO0O6

Half-metal, moment =4, 3,2 ¢
Lattice type : tet, fcc, fcc

40 atoms In tet, fcc, fcc unit cell

Space group : 14/mmm, Fm3m, Fm3m
a=7.89,7.832,7.878A, c/a=1.001,1,1

lonic model : Fe*3(3d°), Cr+3(3d?),
Mo*>(4dl), Re*>(5d?%), W*>(5d1)
U(Fe,Cr) =4,3eV, J(Fe,Cr) =0.89, 0.87 eV



Double perovskite structure
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spin moment orbital

moment
Sr,FeMoQO, Fe Mo total | Fe Mo
GGA | 3.80 -0.33 4.00|0.043 0.032
GGA+U | 3.96 -0.43 4.00|0.047 0.045
Sr,FeReQ, Fe Re total | Fe Re
GGA 3.81 -0.85 3.00|0.070 0.23
GGA+U | 3.98 -0.96 3.00|0.066 0.27
Sr,CrWO, Cr W total | Cr W
GGA 2.30 -0.33 2.00 |-0.007 0.10
GGA+U | 246 -045 2.00 |-0.007 0.15
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Double perovskites
Sr2FeMo06, Sr2FeReO6, Sr2CrwO0O6

 LDA+U has significant effects on DOS,
but experimental data is not available

e Orbital moment of 3d and 4d elements are
all guenched because of strong crystal field

* 5d elements exhibit large unquenched
orbital moment because of strong spin-orbit
Interaction in 5d orbitals



SrRuQ,

The only ferromagnetic conductor of 4d
oxides

Lattice type : orthorhombic perovskite
Space group : Pnma (No. 62)

20 atoms in orthorhombic unit cell
a=5.5332 A, b=5.57169 A, c=7.8491 A
lonic model : Ru**(4d%, t2g3 1 , t2g* | )
U=35¢eV,]=0.58eV

Pseudopotential, 100 k-point, 31360 plane wave,
Cut-off energy = 400 eV



Orthorhombic perovskite SrRuQO,

Sr

RuU

O

layer2

layerl




Intensity (arb. units)
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Density of states (state/eV/i.u.)
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Density of states (state/eV/atom)
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SrRuQ, T
. T. Jeng,

S. H. Lin,
C. S. Hsue
PRL97(200
6)67002

(-1/3,-1/3,-1/3)
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SrRuQ,

 GGA — SrRuQ; Is a normal metal
without orbital ordering

* LDA+U — SrRuQ; Is a half-metal
with | 4d-t2g orbital ordering

o LDA+U successfully gives the metal-
Insulator transition upon doping Ti In

SrRuQ3, Indicating the strong
correlation Is Important in this system




High temperature magnetite (Fe304)

» Half-metal, insulator, moment =4 1/
o Lattice type : fcc

e Space group : Fd3m

e 56 atoms in fcc unit cell

e 2a=28.394, 8.383,8.351 A

 lonic model : Fe*3(3d°), Fe*™(3d°)

o U(Fe*3,Fe*?)=4.5, 4.0eVV

e J(Fe) =0.89eV



Spinel structure

Author:

&: Sun May 21 16:31:45 2000
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Spin and orbital magnetic moments of Fe,O,

(Ug) |SpIn moment Orbital moment
Fe(A) Fe(B)| Total |Fe(A) |Fe(B)
LDA  [-3.31|3.52 |4.00 |-0.018 {0.039
GGA |-3.44|3.60 (4.00 |-0.016 |{0.038
LDA+U (-3.81|3.81 [4.00 |-0.014 |0.21
EXp. -3.8* 4.1 0.2~0.4"

*J. Phys. C 11 (1978) 4389 ™ D.J. Huang et al, SRRC
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High temperature magnetite (Fe304)

 LDA+U gives better DOS for Fe304

e Spin moment of Fe304 from LDA+U
agrees better with neutron scattering
measurement

e On-site U gives large unquenched
orbital magnetic moments for Fe(B)
compatible with MCD results




Low-temperature Fe,O,

Insulator

Lattice type : monoclinic

Space group : P2/c

56 atoms in monoclinic unit cell
a=>5.9444 A, b=5.925 A, c=16.775 A
5=90.2363°

lonic model : Fe*3(3d°), Fe*?(3d°)
U=4.5¢eV,J=0.89 eV

Pseudopotential (75600 plane wave up to
400eV)



P2/C structure (low-temperature magnetite)




CHARGE ORDERED STRUCTURE OF MAGMETITE Fe, O, . ..

P2/m

PHYSICAL REVIEW B 66, 214422 (2002)

P2/c Cc

FI1G. 2. Relationships between the unit cells referred to in the text.

grown by the skull melter technique. A trace of Fe, 05 (0.8
wt % by Rietveld analysis), perhaps arising from surface oxi-
dation of the powder during grinding, was found in the dif-
fraction patterns for this sample. High-resolution neutron
pow der-diffraction data were collected at 90 and 130 K using
the high-resolution neutron powder-diffractometer {HRPL»}
instrument at the ISIS spallation source, United Kingdom.*
Approximately 10 g of sample was loaded into a vanadium
sample can and mounted in a closed-cycle refrigerator to
maintain temperature control while retaining a low instru-
mental background. Data were collected at 90 K for a total of

further distortions were required to account for the peak
broadenings and splittings. Figure 2 shows the relationships
between the unit cells in the low- and high-temperature
phases.

Numerous superstructure peaks were identified by com-
paring the 90 and 130 K profiles. All of these superstructure
peaks were indexed on the monoclinic unit cell previously
prv::apmsed,E which has Ce symmetry and axes;

am= - ( ac'+ bc}’
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Charge and spin moment of Fe,O,
In low-temperature phase (r.,= 1.0 A)

LDA |LDA |Exp.” |LDA+ |LDA+

U U
Spin Charge |Charge |Charge |Spin
Fe(B1) |3.34 5.53 5.6 5.57 3.45
Fe(B2) |3.43 5.50 5.4 5.41 3.90
Fe(B3) |3.32 5.52 5.4 5.44 3.81
Fe(B4) |3.39 5.52 5.6 5.58 3.39

* PRL 87 (2001) 266401




DOS (state/eV/atom)

Fe(B1a)

Fe(B2a);

dyz,0.59e
| S

| r;l.OA

FeiB1b

Ll

dxz,0.59¢
NS

F-;?: {E!'-4]|

Oy 063

Energy {eVv)

-6 4 2 0 2 4 B-10-8_-6 -4 -2 0 2 4 6
Energy {(eV)



o

Vosa
A ——.-"ﬁ“.;‘é..-“ L.

(a) H. T. Jeng,
® Fed) G.Y. Guo,

# Fe(E la)

® EeBlo D. J. Huang,
s rem  PRL93(2004)
“EE 156403,

® Fe(B4)

T &t

II' i --T,
—g.. i
-4-'.

W vam v &

e

i
II| g A
|
N o
.
'i’\l { I'|:|,-I'
b IEa! H

)

'-.I

|

\.I,L?.— =

M i

7, ¥

o W S

4
4

"

3-1 charge-orbital
ordering



Low-temperature Fe304

 LSDA + lattice distortion —
half-metal, no charge ordering

 LSDA+U + lattice distortion —
Insulating ground state with
charge-orbital ordering



Conclusions

e Transition-metal oxides
— narrower bandwidth
— closer to localized electron picture
— more or less strongly correlated
— LDA+U gives better result
— the on-site Coulomb correlation U Is
Important in these systems



CMS I11-6 Hands-on: LDA+U,
orbital decomposed DOS, and band
decomposed charge distribution

Horng-Tay Jeng
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Institute of Physics, Academia Sinica



Working list

o Setup LDA+U bulk calculations for
NIO(AFMII)

» Calculate orbital decomposed DOS
for NIO(AFMII)

 Calculate band decomposed charge
and spin density distribution for
NIO(AFMII)



Setup LDA+U bulk calculations for
NIO(AFMII)

KPOINTS, POSCAR, and
SYSTEM = NiO FCC POTCAR are the same

INCAR:

DOS related values

LDAU = .TRUE. Switch on L(S)DA+U calculation

LDAUTYPE =1 Setup rotationally invariant L(S)DA+U scheme
LDAUL =2 -1 +U in d(I=2) orbital, no on-site U if -1

LDAUU =8.00.0 U=8 and 0eV for Ni and O, respectively
LDAUJ =0.95 0.0 J=0.95 and 0eV for Ni and O, respectively
LMAXMIX = 4 Expand charge in YIm up to =4 (for d orbital)
LDAUPRINT =2 Output occupation matrix

ISMEAR = -5

ISPIN = 2 *U and J must be specified for all atomic types
MAGMOM = 2 -2 2*0

GGA =91

RWIGS =1.20.8



LDA+U controlling parameters

The L(S)DA+U in VASP is switched on by means of the following tags

e LDAU = .TRUE. Switches on the L(S)DA+U.
e LDAUTYPE = 1|2|4 Type of L(S)DA+U (Default: LDAUTYPE = 2)

1 Rotationally invariant LSDA+U according to Liechtenstein et al.
4 Idem 1., but LDA+U instead of LSDA+U (i.e. no LSDA exchange splitting)

2 Dudarev’s approach to LSDA+U (Default)

e LDAUL = L .. [-quantum number for which the on site interaction is added
(-1: no on site terms added, 1: p, 2: d, 3: f, Default: LDAUL = 2)

e LDAUU

U .. Effective on site Coulomb interaction parameter

e LDAUJ

J .. Effective on site Exchange interaction parameter

e LDAUPRINT = 0[/1|2 Controls verbosity of the L(S)DA+U module
(0: silent, 1: Write occupancy matrix to OUTCAR, 2: idem 1., plus potential matrix dumped to stdout,
Default: LDAUPRINT = 0}

NB: LDAUL, LDAUU, and LDAUJ must be specified for all atomic species!
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Orbital decomposed DOS for

INCAR:

SYSTEM = NiO FCC

DOS related values
LORBIT =1

LDAU = .TRUE.
LDAUTYPE =1
LDAUL =2 -1
LDAUU =8.00.0
LDAUJ = 0.95 0.0
LMAXMIX = 4
LDAUPRINT =2
ISMEAR = -5
ISPIN = 2
MAGMOM =2 -2 2*0
GGA =91

RWIGS =1.20.8

NiO(AFMII)

Switch on orbital decomposed DOS calculation

17.428 0.0000E+00 0.0000E+00 0.2000E+02 0.2000E+02

Total DOS

17.542 0.0000E+00 0.0000E+00 0.2000E+02 0.2000E+02
17.656 0.0000E+00 0.0000E+00 0.2000E+02 0.2000E+02

17.65555450 -16.50226769 301  4.12051746  1.00000000

-16.502 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E
-16.388 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E
-16.275 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E

PDOS of the 1st atom in order of  ((I=2)+1)"2=9 terms
S py pz px dxy dyz dz2 dxz dx2
ud ud ud ud ud ud ud ud ud

9*(u d)=18 terms
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t29: dxy, dyz, dzx

MNiO FCC AFMII (PAW-GGA+U-888)
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eg. dz2, dx2-y?2



band decomposed charge and spin
density distribution for NIO(AFMII)

INCAR:

SYSTEM = NiO FCC

DOS related values

LPARD = .TRUE. Switch on partial charge distribution calculation

EINT =4.06.0 From 4eV to 6eV

NBMOD = -3 With respect to Fermi level

LDAU = . TRUE.

LDAUTYPE =1

LDAUL=2-1

LDAUU =8.00.0 -

DAL = 0.95 0.0 Note: You need to calculat_e a
LMAXMIX = 4 Convergent WAVECAR first!!
|Ls[|)v|AEUAP§|—N.g =2 Then use this WAVECAR to do
ISPIN = 2 this calculation

MAGMOM =5-500

GGA =91

RWIGS =1.20.8



LDA+U NIO AFMII eg band:
4~6eV charge distribution

vaspview PARCHG




Homework
please Email to jeng@phys.sinica.edu.tw

Calculate and plot LDA+U DOS of CrO2, NIO,
Co0O, and FeO (U=3,8,7.8,4.5eV, J=0.87, 0.95,
0.92, 0.89eV for Cr, Ni, Co, and Fe, respectively)

Calculate and plot orbital decomposed LDA+U
DOS of NiO, CoO, and FeO

Calculate and plot (vaspview) the charge density
distribution of the unoccupied eg band of NiO,
Co0O, and FeO from LDA+U

Make a list of the magnetic moment (total and
Individual) of FeO, CoO, NIO, and CrO2 from
LDA and LDA+U



