Spectroscopy at nanometer scale

1. Physics of the spectroscopies
2. Spectroscopies for the bulk materials
3. Experimental setups for the spectroscopies

4. Physics and Chemistry of nanomaterials



Various spectroscopic methods

Electrons | EELS

\ AES

Sample

‘| Neutrals

He Scattering

n% Scattering ‘ \\

Photons

FTIR

IPS
APS

«—— | lons

\ ISS
RBS
SIMS

XPS
UPS

Raman



Born-Oppenheimer Approximation
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Electronic Spectroscopy

1. Photons in, photons out — PL
2. Photons in, electrons out — UPS, XPS
3. Electrons in, electrons out — EELS
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absorption coefficient [10* cm™)
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Binding energy and effective radius for the exciton
E. = (m*/m,)(eley)? (13.6 eV)
A = (eleg)(M*/m )1 (0.0529 nm)

For GaAs, g/e,~ 13.2 and m*~ 0.067m,

then E_, ~ 5 meV and a_ ~ 10 nm



X-RAY PHOTOELECTRON SPECTROMETER
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Figure 3.29. X-ray photoelectron spectrometer showing photons fv generated by an X-ray tube
incident on the specimen where they produce photoelectrons e~ characteristic of the specimen
material, which then traverse a velocity analyzer, and are brought to focus at an electron detector
that measures their kinetic energy.
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Vibrational Spectroscopy

1. Photons in, photons out — IR, Raman
2. Electrons in, electrons out — EELS
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Figure 8.5. FTIR spectra of boron nitride nanopowder surfaces after activation at 875 K (tracing
a), after subsequent deuteration (tracing b), and (c) difference spectrum of a subtracted from b
{tracing c). [From M.-I. Baraton and L. Merhari, P. Quintard, V. Lorezenvilli, Langmuir, 9, 1486
(1993).]



The Theory of Raman Spectroscopy
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Figure 8.19. Raman spectra of (a) crystalline graphites and (b) noncrystalline, mainly graphitic,
carbons. The D band appears near 1355cm™' and the G band, near 1580cm™~". [From
D. S. Knight and W. B. White, J. Mater, Sci. 4, 383 {1989).]



One dimensional size effect

Atomic Levels
sin(nwtx/a), n even

Y(X) = — N272%2 2 —
(X) {cos(nnx/a),nodd E = n2rx2h2/2ma2, n = 1,2,3...



Size effect

CHANGE IN VALENCE ENERGY BAND LEVELS
WITH SIZE
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Au nanoparticle as an example

«— 10nm ——»

E- = (h?/2m) (31°n)?3
9(Ep) = (3/2) (n/Ep)

6 = 2/[g(Ep)V] = (4/3) (E¢/N)

Number of valence electrons (N) contained
In the particles is roughly 40,000. Assume
the Fermi energy (E) is about 7 eV for Au,

then
0~0.22meV ~25K
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Ultraviolet photoemission
spectra of ionized copper
clusters Cu,,— ranging in
size from N of 1 to 410
show the energy
distribution versus binding
energy of photoemitted
electrons. These
photoemission patterns
show the evolution of the
3d band of Cu as a function
of cluster size. As the
cluster size increases, the
electron affinity approaches
the value of the bulk metal
work function. (Adapted
from ref. 10.) Figure 5
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Electronic Structure of Single-wall Nanotubes
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Optical properties of nanoparticles
(in the infrared range)

(1) Broad-band absorption:
Due mainly to the increased
normal modes at the surface.

— (2) Blue shift:
Due mainly to the bond shortening
resulted from surface tension.
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Optical properties of nanoparticles
(in the visible light range)

(1) Blue shift:
Due mainly to the energy-gap widening
because of the size effect.

(2) Red shift:
Bond shortening resulted from surface
tension causes more overlap between
neighboring electron wavefunctions.
Valence bands will be broadened and the
gap becomes narrower.
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(3) Enhanced exciton absorption:
Due mainly to the increased probability
of exciton formation because of the
confining effect.

Excitons



Optical properties
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Figure 4.19. Optical absorption spectrum of hydrogen-ike transitions of excitons in Cu,0. EMNERGY (2V)

[Adapted from P. W. Baumeister, Phys. Rev. 121, 359 (1961) ]
Figure 4.20. Optical absorption spectrum of CdSe for two nanoparticles having sizes 20 A and

40 A, respectively. [Adapted from D. M. Mitlleman, Phys. Rev. B49, 14435 (1994).]



Semiconductor quantum dots

(Reproduced from Quantum Dot Co.)
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Mass Analyzer
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Figure 3.8. Sketch of a mass spectrometer utiizing a 90° magnetic field mass analyzer,
showing details of the ion source: A—accelerator or extractor plale, E—electron trap,
—filameni, —onization chamber, L—focusing lenses, F—repeller, 5—slits. The magnetic
field of the mass analyzer is perpendicular fo the plane of the page.
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Figure 4.5. A comparison of the energy levels of the hydrogen atom and those of the jellium
model of a cluster. The efectronic magic numbers of the atoms are 2, 10, 18, and 36 for He, Ma,
Ar, and Kr, respectively (Ihe Kr energy levels are not shown on the figure) and 2, 18, and 40 for
the clusters. [Adapted from B. K. Rao et al., J. Cluster Sci. 10, 477 (1999).]

1




na
[%]]

25

=&
f=]

FIRST IONIZATION POTENTIAL (eV) ®

f=]

l=Period 2»t=Period 3*+—— Period 4 ——»¢—— Period 5 —»f
e TR
SR E i
=
=
=
0
i ¥ 2

e T '--r._ e - T -'_ Wiy NN e o A P LT ¥ 1% _' iy v g &)

AR AR L AN A R L I e L R R e

& IL.J' 5] |N | F }QaIA | 2] |CIIchI\:'}\Jnkokuba AslBerIYINbl }%[Ad InlStl IIClealPrl I

HeBe C ONeMgSi S ArCa Ti Cr Fe NiZnGe Se Kr Sr Zr MoRuPdCd Sn Te Xe Ba Ce NdSm

b 38
334
=
<
-
=
=
Ll 40 58 '
z e 92
e o L TTTT L
5 26
# #
0 I' | | | |
0 20 40 100

60 | 80
NUMBER OF POTASSIUM ATOMS PER CLUSTER

Shell structure: Two views. a: Atomic ionization
potentials drop abruptly from above 10 eV following
the shell closings for the noble gases (He, Ne, Ar
and so on). For semiconductors (labeled in blue) the
ionization potential is between 8 and 10 eV, while
for conductors (red) it is less than 8 eV. It is clear
that bulk properties follow from the natures of the
corresponding atoms. (Adapted from A. Holden,
The Nature of Solids, @ Columbia U. P., New York,
1965. Reprinted by permission.) b: lonization
potentials for clusters of 3 to 100 potassium atoms
show behavior analogous to that seen for atoms.
The cluster ionization potential drops abruptly
following spherical shell closings at N = 8, 20,
40.... Features at N =26 and 30 represent
spheroidal subshell closings. The work function for
bulk potassium metal is 2.4 eV. Figure 3
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Reactivity of nanoclusters
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Figure 4.13. Mass spectrum of Al nanoparticles before (top) and after (bottom) axposure to
oxygen gas. [Adapted from R. E. Leuchtner et al., J. Chem. Phys., 91, 2753 {1586).]
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Mackay icosahedra
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20 fce(111) faces
Shell model
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Scanning Tunneling Spectroscopy

1. Barrier Height Imaging

Up to now homogeneous surfaces were considered. If there is an
Inhomogeneous compound in the surface the work function will be
iInhomogeneous as well. This alters the local barrier height. Differentiation
of tunneling current yields

Thus the work function can directly be ds ™~
measured by varying the tip-sample distance,

which can be done by modulating the current —
with the feedback turned on.
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2. dl/dV imaging
If the matrix element and the density of
states of the tip is nearly constant, the
tunnelingrcurrent can be estimated to

I ec jpﬂﬂ (EF —eV+ a)dE

Differentiation yields the density of state:

dI
dv pn(EF - 'EV)

I/

Vv
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The mapping of surface density of states can be deduced by

» Modulation of the bias voltage (dI/dV imaging):

The tip is scanned in the constant current mode to give a
constant distance to the sample. A dither voltage of ~1k Hz is
added to the bias voltage while the feedback loop remains active.
A lock-in technique is employed to obtain the current change at
the dither frequency.

« Current-Imaging Tunneling Spectroscopy (CITS): The tip is
scanned in the constant current mode to give a constant distance
to the sample. At each point the feedback loop is disabled and a
current-voltage curve (I-V curve) is recorded.



TUNNELING CONDUCTANCE {I/V)
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STS of Si(111)-(7x7)
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STS of Si(111)-(7x7)
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1. Science 234, 304-309 (1986).
2. Phys. Rev. Lett. 56, 1972-1975 (1986).



Density of states of various dimensions
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Quantum size effect

A = de Broglie wavelength of electron
a = thickness of metal film
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Spectra for Pb Films
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Gundlach Oscillation in STS

Standing-wave states

E., ad In tunneling gap
E
E. F
TUNNEL
: mapmiER TP o
tlp vac
sample (c)
normal tunneling Pt
E: of tip > E, . of sample Zh-4
10 20 z(R)
Eyac Er
H ti Superposition of image potential
P and applied potential

sample
fleld emission



.rf 5
(B 2 . . . . :
q% Transmission Resonance in Ag Films on Si(111)

e— Crystal
9-layer

Sample bias (V)

Work function of Ag/Si(111) = 4.41 eV



ﬁ% 47 Quantum Size Effect above Vacuum Level
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e Quantum well states are measured with
STS in the Pb films of varied thickness on
the Si(111) surface.

e Quantum phenomenon of the transmission
resonance can be observed with STS in Ag
films on the Si(111) surface.

e Positions of the transmission resonance
measured with STS can serve as finger prints for
the Ag films of varied thickness.



[;j”;Cfg Work function measurements for
N PS5l e thin films
work function measurement for thin film Broad beam technique

using photo-emission spectroscopy

F(a) Quantum Well States for Ag on Fe(100) j require layer by layer growth
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Detection of Subtle Variation of Work Function
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e A general phenomenon of the constant energy shift
IS observed in high order Gundlach oscillation.

e The work function of a thin metal film can be measured
with the constant energy shift.

e The precision of the measurement can be better than
0.02 eV, comparable to the photoemission results.



Inelastic Tunneling

Elastic vs. Inelastic Tunneling
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Single Molecule Vibrational Spectroscopy and Microscopy
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B.C. Stipe, M.A. Rezaei, and W. Ho,
Science 280, 1732-1735 (1998).
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Atomic Scale Coupling of Photons to Single-Molecule Junctions
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Quantum corral

D.M. Eigler, IBM, Amaden



Artificial atom

---------------------

! Open .
_/v terrace _
e .
b : 9
-, Circle’s
[ center
~

4

q

4

-

o I | STy |

.06 -04 -02 00 02 04
Voltage (V)



