

CMS II-2: Density Functional Theory (DFT) and local-density approximation (LDA)

Horng-Tay Jeng

(鄭弘泰)

Institute of Physics, Academia Sinica

May 10, 2007

Outline

- Density Functional Theory (DFT)
- local-density approximation (LDA)
- Exchange-correlation energy functional
- Limitations of LDA
- Attempts on improving LDA

Density Functional Theory (DFT)

Hohenberg-Kohn Theorem, PR136(1964)B864

- The ground-state energy of a system of identical fermions is a unique functional of the particle density.
- This functional attains its minimum value with respect to variation of the particle density subject to the normalization condition when the density has its correct values.

Hohenberg and Kohn

$$H = \sum_{i=1}^N \frac{p_i^2}{2m} + \sum_{i=1}^N V_{ext}(\vec{r}) + \frac{1}{2} \sum_{i=1}^N \sum_{j=1(j \neq i)}^N \frac{e^2}{|\vec{r}_i - \vec{r}_j|}$$

Suppose we know $V_{ext}(\vec{r})$, we can find $\Psi(\vec{r}_1, s_1, \vec{r}_2, s_2 \dots, \vec{r}_N, s_N)$

$$n(\vec{r}_1) = \int dr_2^3 \int dr_2^3 \dots \int dr_N^3 \left| \Psi(\vec{r}_1, s_1, \vec{r}_2, s_2 \dots, \vec{r}_N, s_N) \right|^2$$

Theorem : The ground state properties of a many electron system are uniquely determined by its electron distribution $n(\mathbf{r})$.

→ All ground state properties of the many electron system are functional of $n(\mathbf{r})$.

$$E_T[n], \quad T[n], \quad \dots$$

Hohenberg and Kohn,
Phys. Rev. B 136, 864, 1964

Proof :

Suppose there are two $V_{ext}(\vec{r})$ (V_1 and V_2) have the same $n(r)$.

Suppose $V_1 \neq V_2 + \text{constant}$

$$\Psi_1 \neq \Psi_2 \quad (H_1 \Psi_1 = E_1 \Psi_1 \quad ; \quad H_2 \Psi_2 = E_2 \Psi_2)$$

Suppose the ground state is nondegenerate, then

$$\langle \Psi_1 | H_1 | \Psi_1 \rangle < \langle \Psi_2 | H_1 | \Psi_2 \rangle \quad ; \quad H_1 = H_2 + V_1 - V_2$$

$$E_1 < \langle \Psi_2 | H_2 | \Psi_2 \rangle + \langle \Psi_2 | V_1 - V_2 | \Psi_2 \rangle = E_2 + \int d^3r (V_1 - V_2) n(r)$$

$$\int dr_1^3 \cdots \int dr_N^3 (V_1(\vec{r}_1) - V_2(\vec{r}_1)) |\Psi(\vec{r}_1, s_1 \cdots, \vec{r}_N, s_N)|^2 = \int dr_1^3 (V_1(\vec{r}_1) - V_2(\vec{r}_1)) n(\vec{r}_1)$$

$$E_2 < \langle \Psi_1 | H_1 | \Psi_1 \rangle + \langle \Psi_1 | V_2 - V_1 | \Psi_1 \rangle = E_1 + \int d^3r (V_2 - V_1) n(r)$$

$$E_1 - E_2 < \int d^3r (V_1 - V_2) n(r) < E_1 - E_2 \quad \text{contradiction}$$

$$n_1(\vec{r}) = n_2(\vec{r}) \quad \rightarrow \quad V_1 = V_2 + \text{constant}$$

Total energy functional

$$E_T[n] = \int V_{ext}(\vec{r})n(\vec{r})d^3r + \frac{1}{2} \iint \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r d^3r' + T[n] + E_{xc}[n]$$

Coulomb energy

Exchange-correlation
energy

Minimize E_T subject to the condition $N = \int n(\vec{r})d^3r \rightarrow n(\vec{r})$

$$\rightarrow \frac{\delta T[n]}{\delta n} + V_{ext}(\vec{r}) + \int \frac{n(\vec{r})}{|\vec{r} - \vec{r}'|} d^3r + V_{xc}(\vec{r}) = \mu \quad ; \quad V_{xc}[\vec{r}] = \frac{\delta E_{xc}[n]}{\delta n}$$

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{ext}(\vec{r}) + V_H(\vec{r}) + V_{xc}(\vec{r}) \right] \psi_i(\vec{r}) = \varepsilon_i \psi_i(\vec{r})$$

$$n(\vec{r}) = \sum_i^{occ} |\psi_i(\vec{r})|^2 \quad \text{Kohn-Sham eq., PRB(1965)}$$

$$\rho_{in} \rightarrow V_{eff}(r) \rightarrow \varepsilon_i; \psi_i \rightarrow \rho_{out}$$

$$\rho_{in}^{n+1} = (1 - \alpha) \rho_{in}^n + \alpha \rho_{out}^n$$

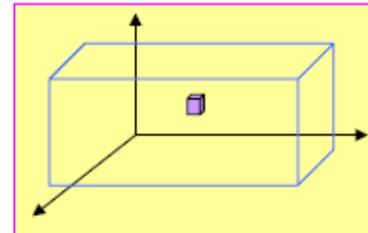
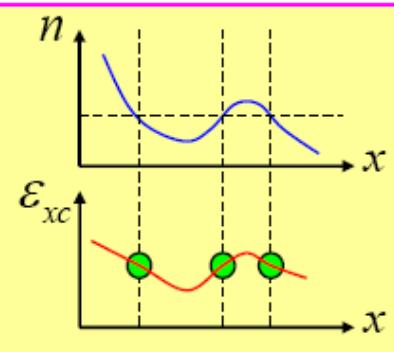
$(\rho(r) = n(r))$
**self-consistent
scheme**

1-2. Local Density Functional Approximation (LDA)

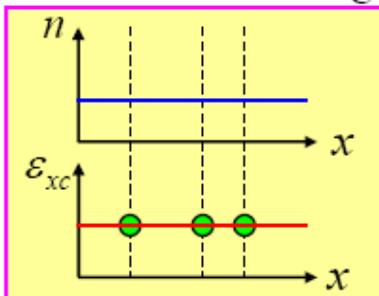
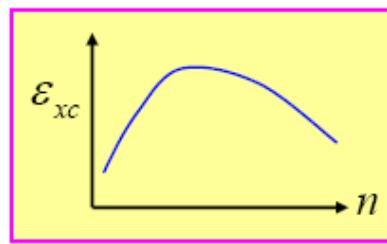
$$E_{xc}[n] = \int \mathcal{E}_{xc}[n] n(\vec{r}) d^3r \quad ; \mathcal{E}_{xc}[n] \text{ exchange-correlation energy per electron}$$

$$\mathcal{E}_{xc}[n] = \mathcal{E}_{xc}(n(\vec{r})) \quad \text{LDA approximation}$$

$$V_{xc}(r) = \frac{\delta E_{xc}[n]}{\delta n} = \frac{d}{dn} \{n \mathcal{E}_{xc}(n)\}$$



Uniform electron gas



W. Kohn and L. J. Sham, Phys. Rev. B 140, A1133 (1965)

Hartree – Fork approx. $\varepsilon_x = -\frac{0.458}{r_s}$ where $n = \left(\frac{4}{3}\pi r_s^3\right)^{-1}$

Quantum Monte Carlo tech. (Ceperly) $\varepsilon_c = \frac{r_s}{1 + \beta_1 \sqrt{r_s} + \beta_2 r_s}$

$$V_{xc}(r) = \frac{d}{dn} \{n \varepsilon_{xc}(n)\}$$

Local spin-density approximation (LSDA)

$$E_{xc} [n_\uparrow, n_\downarrow] = \int n(\vec{r}) \varepsilon_{xc}(n_\uparrow(\vec{r}), n_\downarrow(\vec{r})) d^3r; \quad V_{xc,\sigma}(\vec{r}) = \frac{\delta E_{xc} [n_\uparrow(\vec{r}), n_\downarrow(\vec{r})]}{\delta n_\sigma(\vec{r})}$$

Generalized gradient approximation (GGA)

$$\varepsilon_{xc} [n, \vec{\nabla}n] = \varepsilon_{xc}(n(\vec{r}), \vec{\nabla}n(\vec{r}))$$

Exchange-correlation functional

$E^{xc}[n]$ accounts for the difference between the exact ground-state energy and the energy calculated in a Hartree approximation and using the non-interacting kinetic energy $T_0[n]$,

$$E^{xc}[n] \equiv T[n] - T_0[n] + U^{xc}[n]$$

$T[n]$, $T_0[n]$... exact and non-interacting kinetic energy functional
 $U^{xc}[n]$... interaction of the electrons with their own exchange-correlation hole n_{xc} defined as (ρ_2 is the two-particle density matrix)

$$\rho_2(\vec{r}, s; \vec{r}', s') \equiv n_s(\vec{r})(n_{s'}(\vec{r}') + n_{xc}(\vec{r}, s; \vec{r}', s'))$$

Spin-polarized LDA (LSDA)

$$E^{xc}[n(\vec{r})] = \int n(\vec{r}) \epsilon_{xc}[n(\vec{r})] d^3r,$$

Exchange-functional (for spin-polarized systems,
 $n(\vec{r},\uparrow) \neq n(\vec{r},\downarrow)$, $n = n_\uparrow + n_\downarrow$)

$$\begin{aligned} \epsilon_x[n(\vec{r},\uparrow), n(\vec{r},\downarrow)] &= -\frac{3e^2}{4\pi} (3\pi^2)^{1/3} \left\{ \frac{n(\vec{r},\uparrow)^{4/3} + n(\vec{r},\downarrow)^{4/3}}{n(\vec{r})} \right\} \\ &= \epsilon_x^p + (\epsilon_x^f - \epsilon_x^p) \frac{(n_\uparrow/n)^{4/3} + (n_\downarrow/n)^{4/3} - (1/2)^{1/3}}{1 - (1/2)^{1/3}} \end{aligned}$$

with $\epsilon_x^p = \epsilon_x(n_\uparrow = n_\downarrow = n/2)$ for the paramagnetic (non-spinpolarized) and $\epsilon_x^f = \epsilon_x(n_\uparrow = n, n_\downarrow = 0)$ for the ferromagnetic (completely spin-polarized) limits of the functional.

Correlation functional $\epsilon_c[n(\vec{r},\uparrow), n(\vec{r},\downarrow)]$ fitted to the ground-state energy of a homogeneous electron gas calculated using quantum Monte Carlo simulations and similar spin-interpolations.

Generalized Gradient Approximation (GGA)

General *semilocal* approximation to the exchange-correlation energy as a functional of the density and its gradient to fulfill a maximum number of exact relations,

$$E_{\text{xc}}^{\text{GGA}}[n_{\uparrow}, n_{\downarrow}] = \int d\mathbf{r} f(n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r}), \nabla n_{\uparrow}(\mathbf{r}), \nabla n_{\downarrow}(\mathbf{r})),$$

Exchange correlation potential:

$$V_{\text{xc}}[n(\mathbf{r})] = \frac{\partial E_{\text{xc}}[n]}{\partial n(\mathbf{r})} - \nabla \cdot \frac{\partial E_{\text{xc}}[n]}{\partial (\nabla n(\mathbf{r}))}.$$

The gradient of the density is usually determined *numerically*.

GGA-PW91

Exchange energy:

$$E_x^{\text{PW91}}[n] = - \int d\mathbf{r} n \frac{3k_F}{4\pi} \frac{1 + 0.1965s \sinh^{-1}(7.796s) + (0.274 - 0.151e^{-100s^2})s^2}{1 + 0.1964s \sinh^{-1}(7.796s) + 0.004s^4}$$

Correlation energy:

$$E_c^{\text{PW91}}[n] = \int d\mathbf{r} n (\varepsilon_c(\mathbf{r}_s, \zeta) + H(t, r_s, \zeta))$$

with $k_F = (3\pi^2 n)^{1/3}$, $s = |\nabla n|/2k_F n$, $t = |\nabla n|/2gk_s n$, $g = [(1 + \zeta)^{2/3} + (1 - \zeta)^{2/3}]/2$, and $k_s = (4k_F/\pi)^{1/2}$.

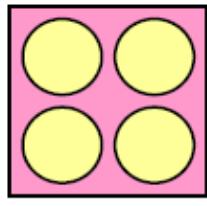
1-3 First-principles Calculation Method

(i) Plane Wave : (Pseudopotential Method)

$$u_{\vec{k}}(\vec{r}) = \frac{1}{\sqrt{\Omega}} \sum_n C_n^{(\vec{k})} e^{i\vec{G}_n \cdot \vec{r}}$$

Use pseudopotential to replace the effect of the core electron

(ii) Muffin-Tin Method : LAPW, LMTO, FPLAPW , FPLMTO

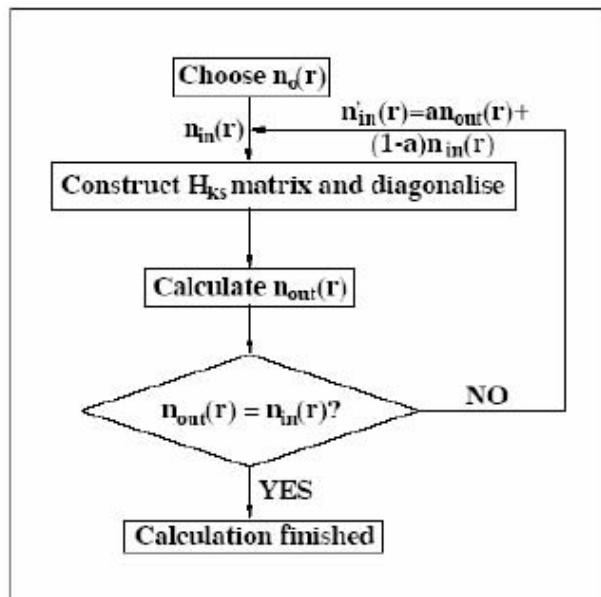


$$\chi_n(\vec{r}) = \begin{cases} e^{i\vec{G}_n \cdot \vec{r}} \\ \sum_{n\ell m} A_{n\ell m} R_{n\ell}(r) Y_{\ell m}(\theta, \phi) \end{cases}$$

(iii) Atomic Orbital : LCAO, Tight Binding Method

$$\psi_{\vec{k}}(\vec{r}) = \sum_{n\ell m} C_{n\ell m}^{(\vec{k})} \sum_{\vec{R}} e^{i\vec{k} \cdot (\vec{r} + \vec{R})} \phi_{n\ell m}(\vec{r} - \vec{R})$$

Self-consistent field (SCF) calculations



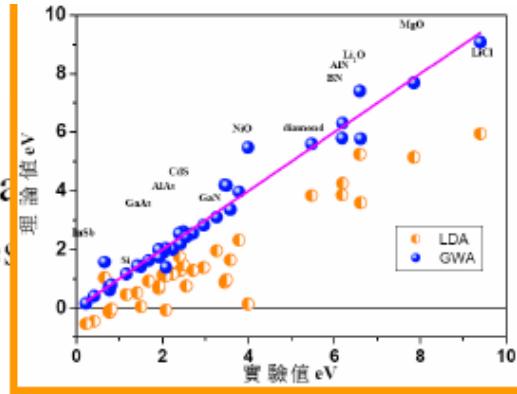
- $V_H(r)$ and $V_{XC}(r)$ depend on $n(r)$
- $n(r)$ depends on $\{\psi_i(r)\}$
- But we are trying to find $\{\psi_i(r)\}$ and the corresponding energy levels — we need *self-consistency*

Insufficiencies of LDA

- Poor eigenvalues, PRB23, 5048 (1981)
- Lack of derivative discontinuity at integer N, PRL49, 1691 (1982)
- Gaps too small or no gap, PRB44, 943 (1991)
- Spin and orbital moment too small, PRB44, 943 (1991)
- Especially for transition metal oxides

- **Band-gap problem:**

- HKS theorem not valid for excited states → band gaps in semiconductors and insulators are always underestimated
- **Possible solutions:** - Hybrid-functionals lead to correct band gaps
- LDA+U, GW, SIC increase correlation gaps



- **Overbinding:**

- LSDA: too small lattice constants, too large cohesive energies, too high bulk moduli
- **Possible solutions:** - GGA: overbinding largely corrected (tendency to overshoot for the heaviest elements)
- The use of the GGA is mandatory for calculating adsorption energies, but the choice of the "correct" GGA is important.

- Neglect of strong correlations

- Exchange-splitting underestimated for narrow d - and f -bands
- Many transition-metal compounds are Mott-Hubbard or charge-transfer insulators, but DFT predicts metallic state
- Possible solutions: - Use LDA+U, GW, SIC, ...

- Neglect of van-der Waals interactions

- vdW forces arise from mutual dynamical polarization of the interacting atoms → not included in any DFT functional
- Possible solution: - Approximate expression of dipole-dipole vdW forces on the basis of local polarizabilities derived from DFT ??

Attempts on improving LDA

- Self-interaction correction (SIC)
PRL65(1990)1148
- Optimized effective potential method (OEP)
- Hartree-Fock (HF) method, PRB48(1993)5058
- Time-dependent density functional (TDDFT)
- Quantum Monte-Carlo method (QMC)
- Dynamical Mean Field Theory (DMFT)
- GW approximation (GWA), PRB46(1992)13051,
PRL74(1995)3221
- LDA+Hubbard U (LDA+U) method,
PRB44(1991)943, PRB48(1993)16929

LDA+U PRB44(1991)943, PRB48(1993)169

- Delocalized s and p electrons : LDA
- Localized d or f electrons : +U
using on-site d-d Coulomb interaction
(Hubbard-like term)

$$U \sum_{i \neq j} n_i n_j$$

instead of averaged Coulomb energy
 $UN(N - 1)/2$

CMS II-2 Hands-on: xmgrace, equilibrium lattice constant, and LDA vs GGA

Horng-Tay Jeng
(鄭弘泰)

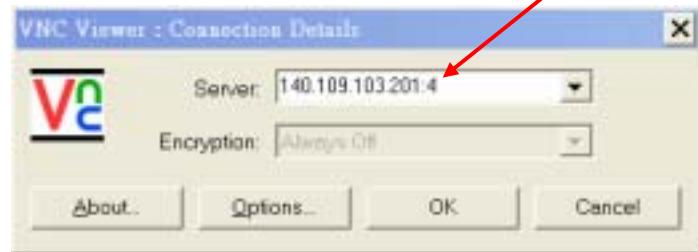
Institute of Physics, Academia Sinica
May 10, 2007

1. login your account, change password of vnc (X-window) server:
%vncpasswd

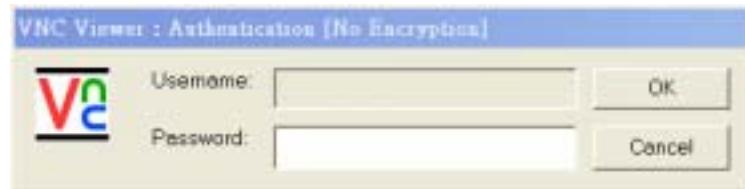
2. Start vncserver:
%vncserver

.....
Log file is /home/cms1/.vnc/hcserver.cluster:4.log

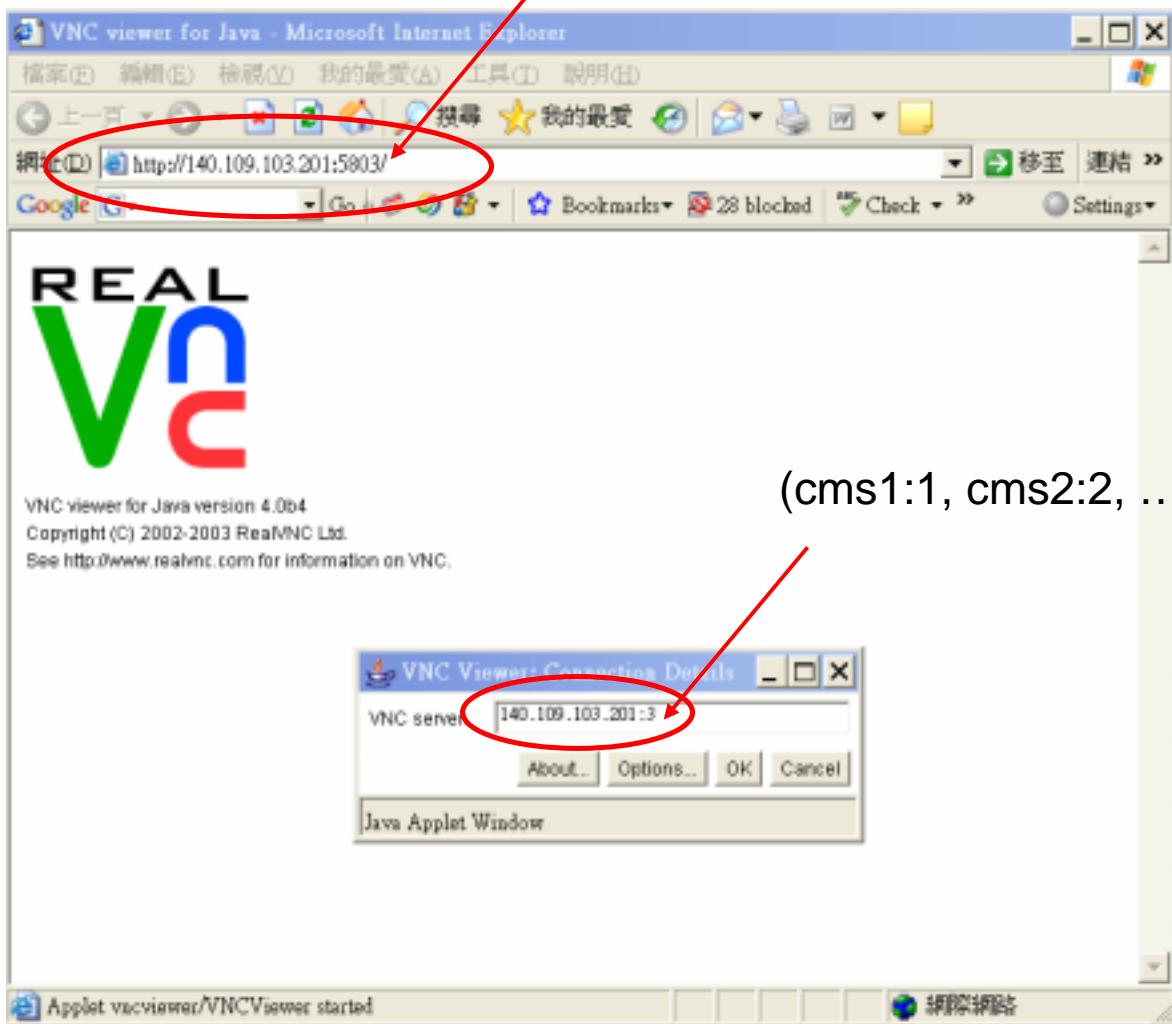
3. Open vnc viewer on your PC



4. key-in your vnc password



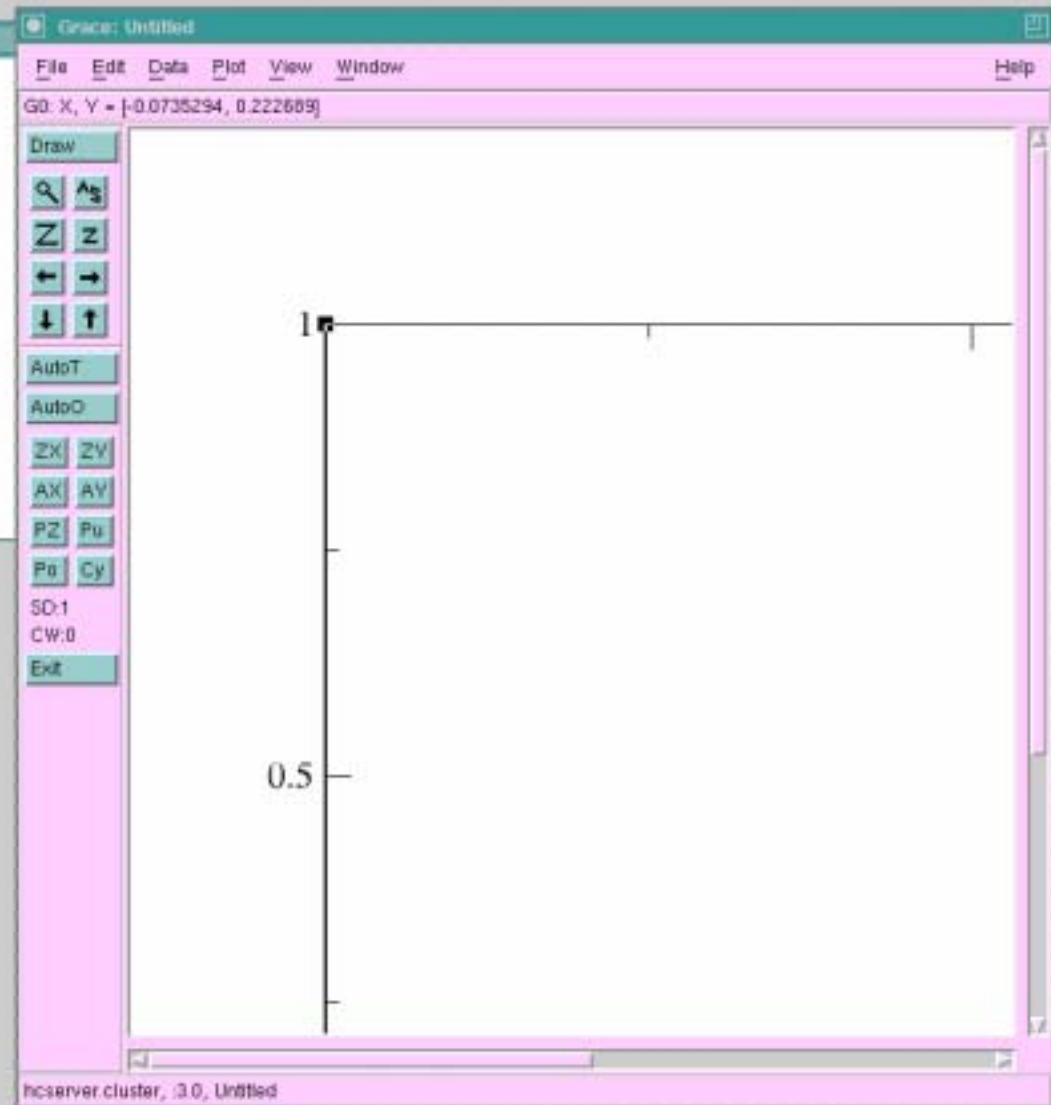
(5801, 5802, 5803)



VNC console

guest@hcserver:~

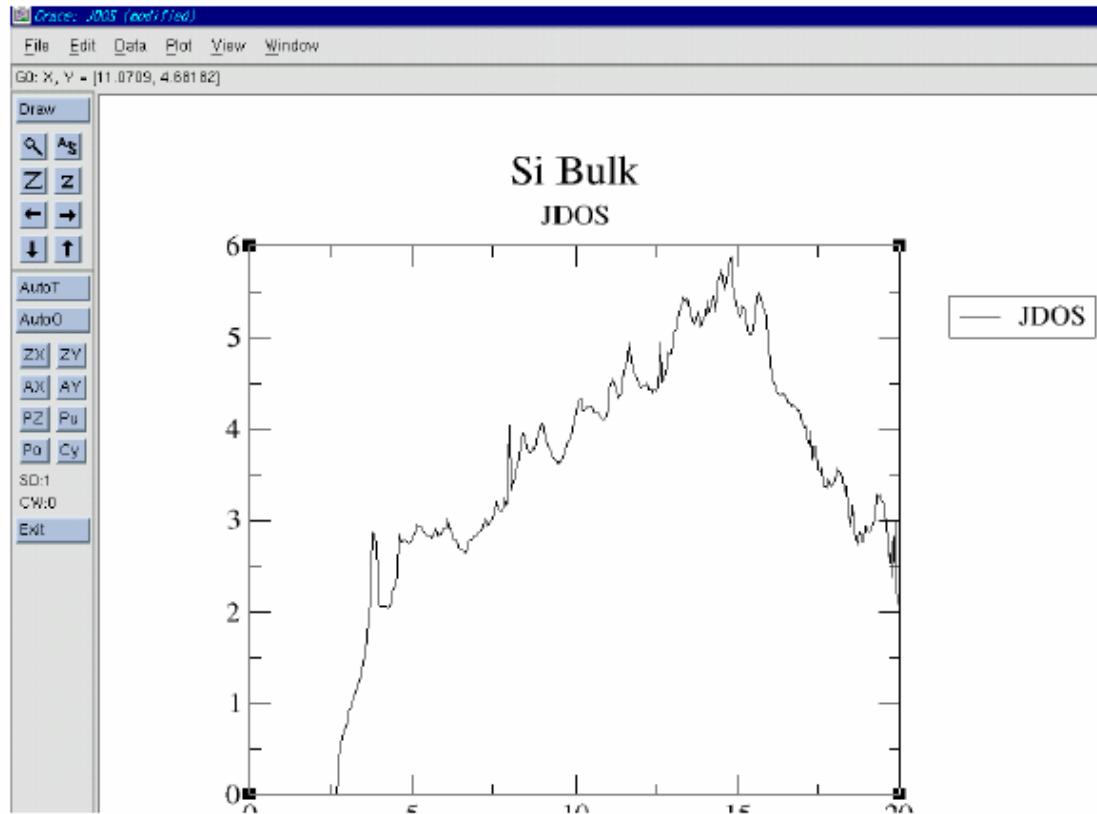
```
[guest@hcserver guest]~$ xmgrace6  
[1] 7683  
[guest@hcserver guest]~$
```



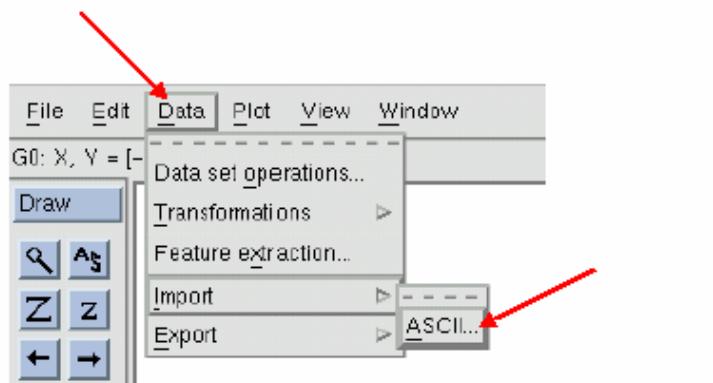
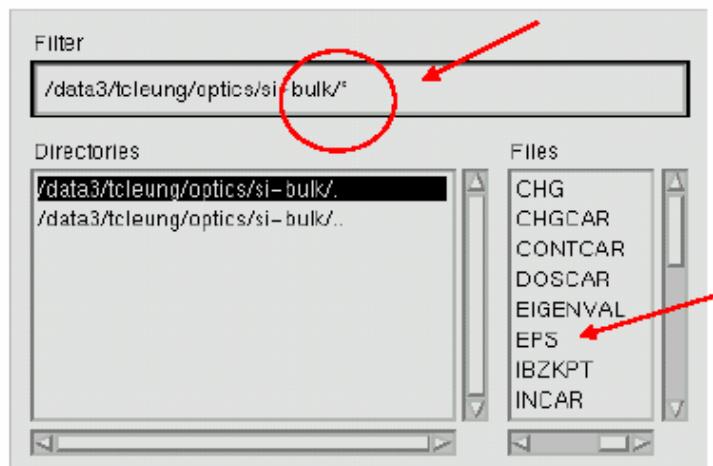
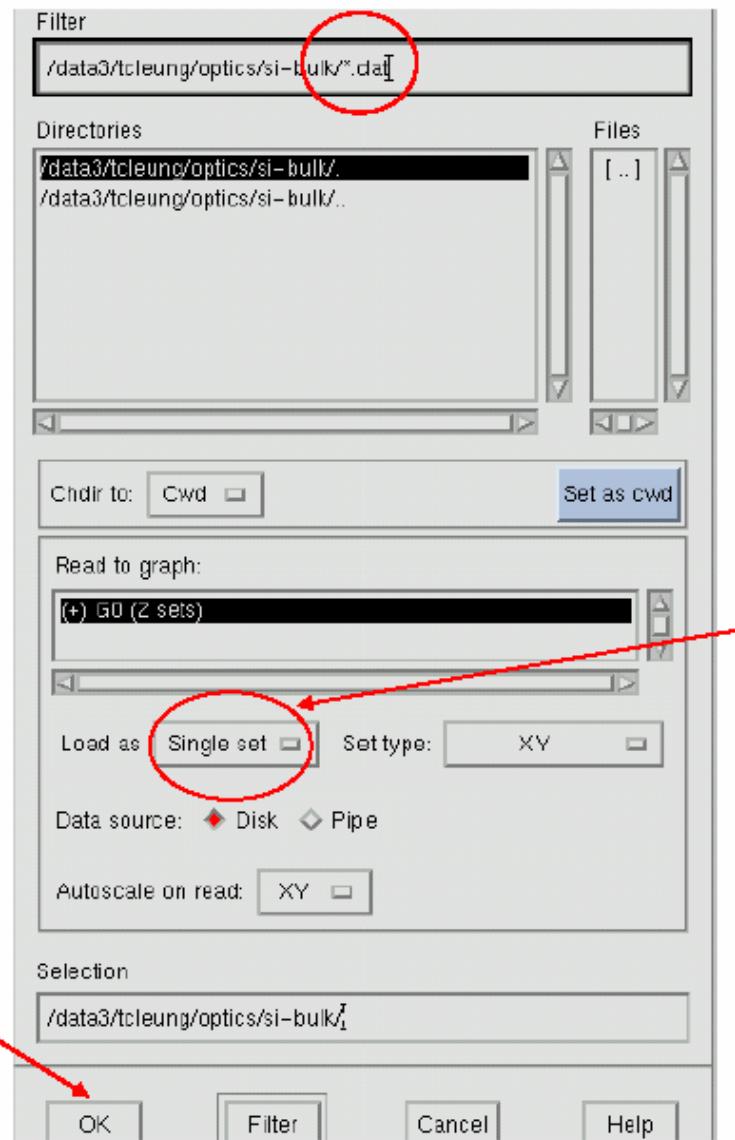
xmGrace

How to use xmGrace to draw lines ?

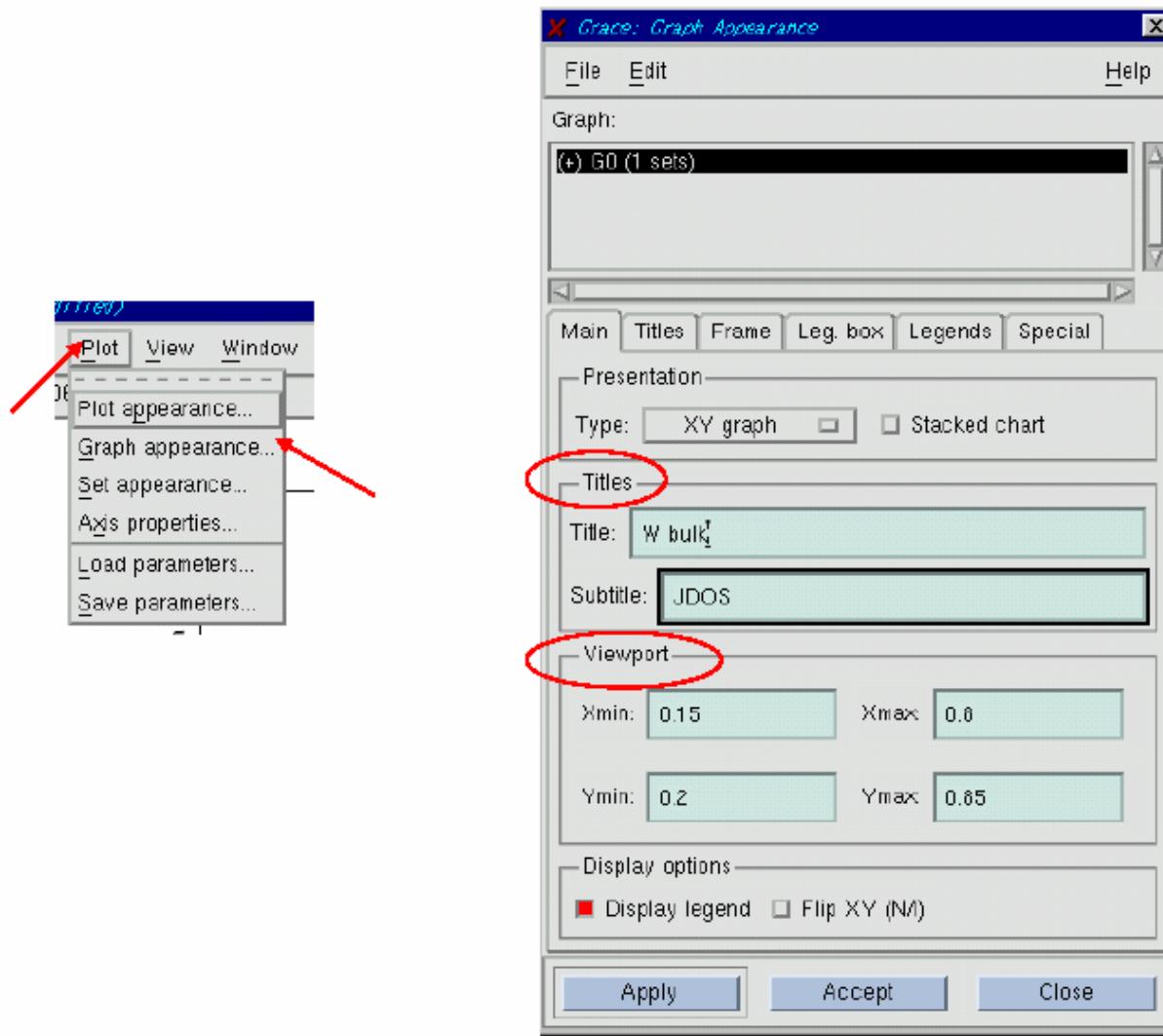
%xmGrace filename (default *.dat)



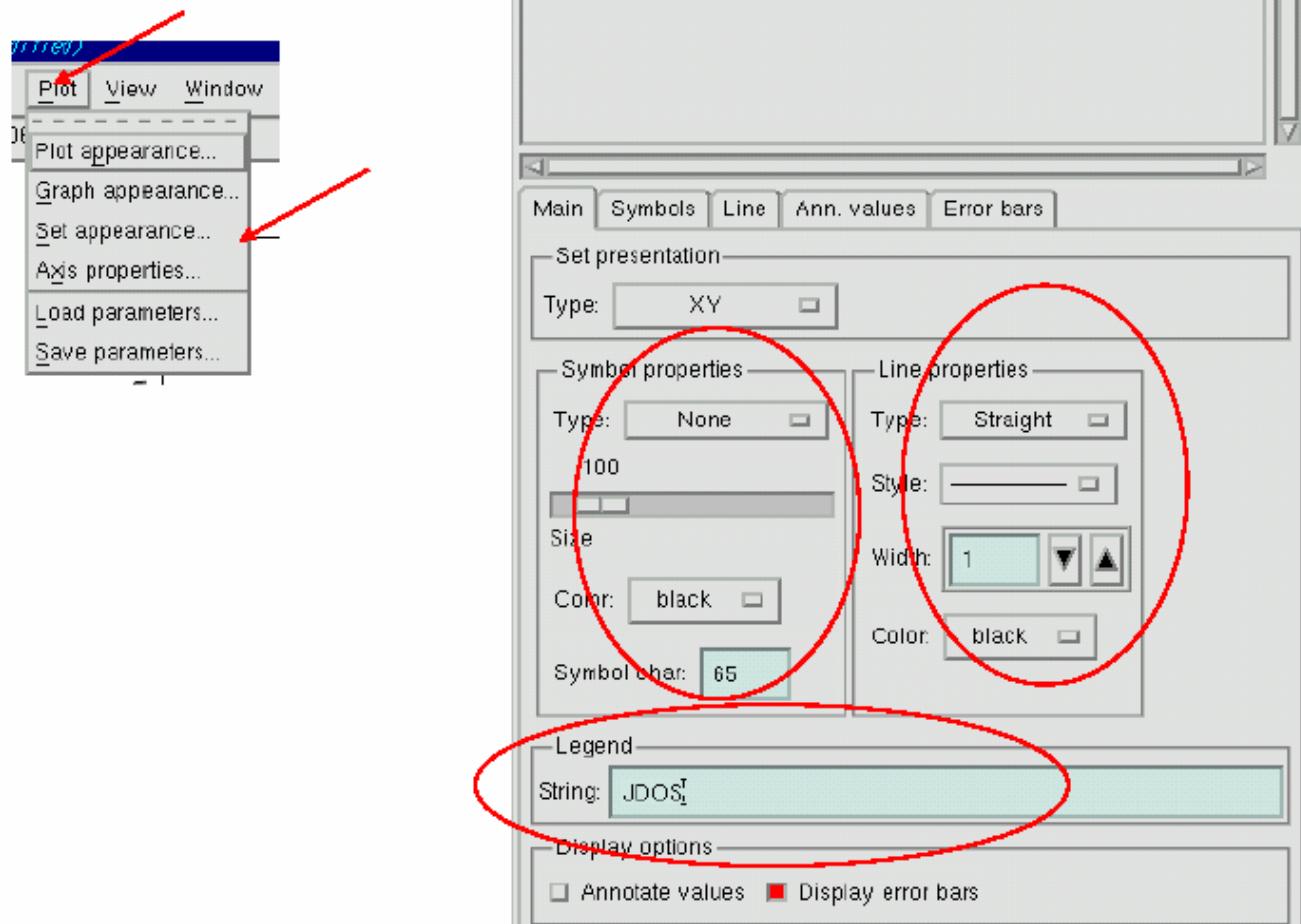
How to import a data file ?



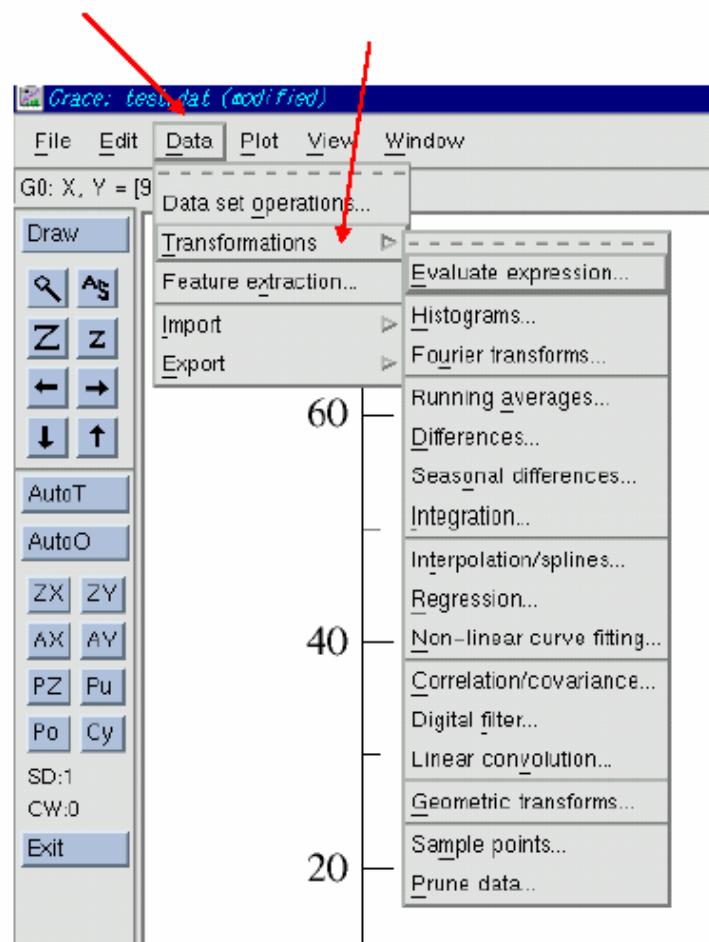
How to set the Titles and the Viewport ?



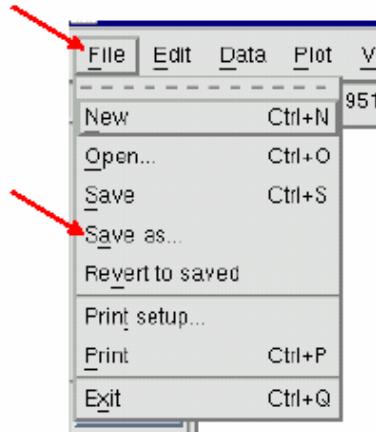
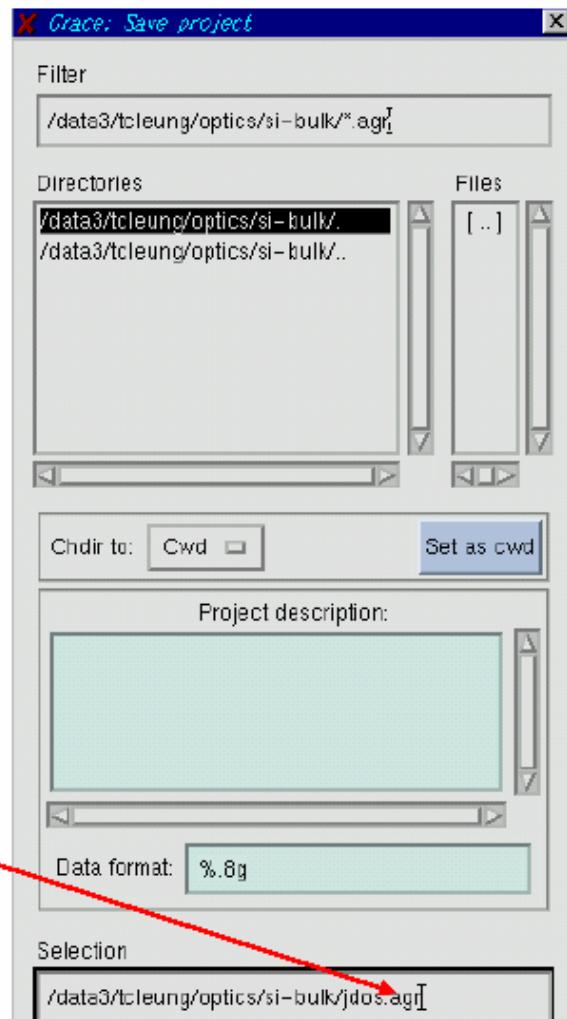
How to set Line properties Symbol properties, Legend ?



How to analyze the data ?



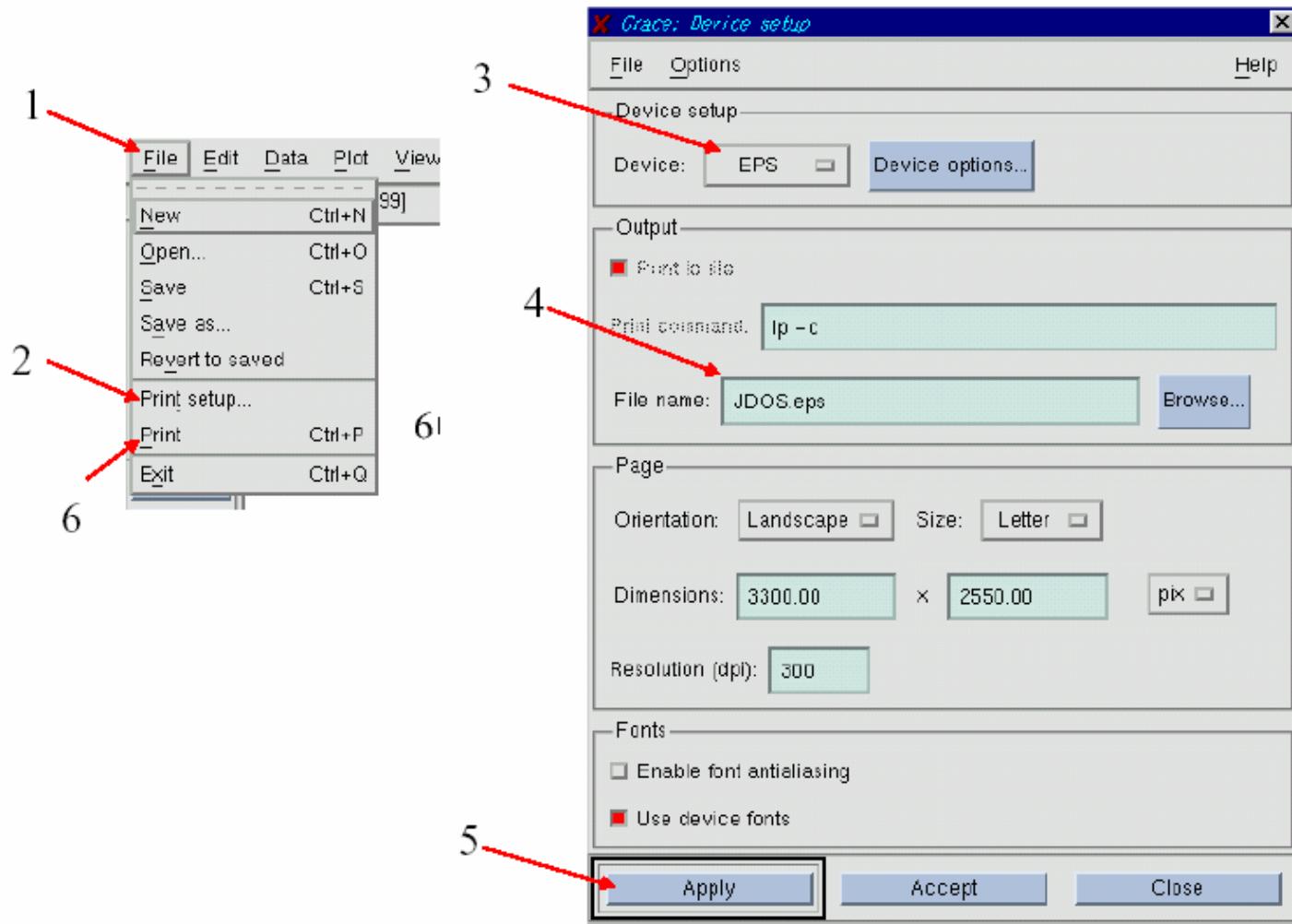
How to save the result (*.agr) ?



You can use the following statement to redraw the results.

%xmGrace jdos.agr

How to print out the result (*.eps) ?



Optimize lattice constant

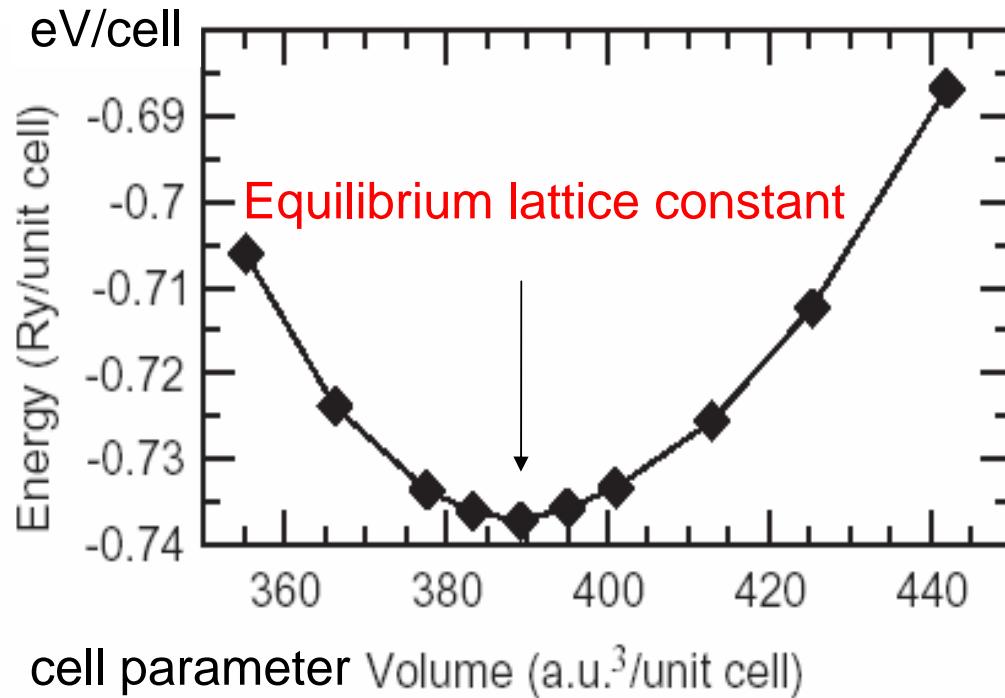


Fig 1. Total energy (lower), total and local Cr spin magnetic moments (upper) of CrO_2 as a function of volume, c/a is fixed at 0.664. The total energy is relative to $-4805.0 \text{ Ry}/\text{unit cell}$. The experimental unit cell volume is 385 a.u.^3 .

Work list

- Setup bulk calculation for Si(Dia) using sufficient k-points, and experimental lattice structure as input
- Vary the lattice from -5% to 5% and redo the bulk calculation to find out the equilibrium lattice constant of Si(Dia)
- Setup a convergent bulk calculation for Cu(FCC)
- Find out the equilibrium lattice constant for Cu(FCC) using LDA and GGA

Optimize the Si(Dia) lattice constant

- Revise the lattice constant in POSCAR by $5.43*0.99$, redo the bulk calculation to obtain the cohesive energy
- Redo $5.43*0.98\dots$, $5.43*0.95$, record the cohesive energies
- Redo $5.43*1.01, \dots, 5.43*1.05$, record the cohesive energies
- Plot the energy (E) vs lattice constant (A) plot for Si(Dia) using xmGrace

LDA vs GGA

- Setup a convergent bulk calculation for Cu(FCC) using LDA
- Find the equilibrium lattice constant for Cu(FCC) using LDA
- Redo the calculations using GGA approximation by using GGA pseudopotential (potpaw_GGA) and adding a new line in INCAR:
GGA = 91

Homework

please Email to jeng@phys.sinica.edu.tw

- Using sufficient k-points to find out the equilibrium lattice constants of Si(Dia) and C(Dia) and compare with the experimental lattice constants
- Make a cohesive energy (E) vs lattice constant (A) plot for Si(Dia) and C(Dia) using xmGrace
- Make a E-A plot for Cu(FCC) using LDA and GGA