

Computational Material Science

Part I

Ito Chao (趙奕媧)

Institute of Chemistry
Academia Sinica

Qualitative Molecular Orbital Theory (QMOT)

How to get the energy of the system?

Shrödinger equation:

$$H\psi = E\psi$$

$$\int \psi H \psi d\tau = \int \psi E \psi d\tau$$

$$\rightarrow E = \frac{\int \psi H \psi d\tau}{\int \psi \psi d\tau}$$

H: Hamiltonian operator ψ : wavefunction E: system energy

$$H\psi = E\psi$$

- What is in the Hamiltonian?

$$H = - \sum_i \frac{\hbar^2}{2m_e} \nabla_i^2 - \sum_k \frac{\hbar^2}{2m_k} \nabla_k^2 - \sum_i \sum_k \frac{e^2 Z_k}{r_{ik}} + \sum_{i < j} \frac{e^2}{r_{ij}} + \sum_{k < l} \frac{e^2 Z_k Z_l}{r_{kl}}$$

Operator for
kinetic energy
of electron

For kinetic
energy
of nucleus

For attraction of
the electrons to
the nuclei

For the
interelectronic
repulsions

For the
internuclear
repulsions

Under the **Born-Oppenheimer approximation** (electrons respond to the motion of nucleus instantaneously, so assume fixed nuclear geometry when electronic energy is evaluated), this term is zero!

$$H\psi = E\psi$$

- What is the electronic wave function of a system?

In the so-called molecular orbital theory

ψ : linear combination of atomic orbitals

$$\psi_1 = c_{11}\phi_1 + c_{12}\phi_2 + c_{13}\phi_3 + \dots + c_{1N}\phi_N$$

$$\psi_2 = c_{21}\phi_1 + c_{22}\phi_2 + c_{23}\phi_3 + \dots + c_{2N}\phi_N$$

⋮

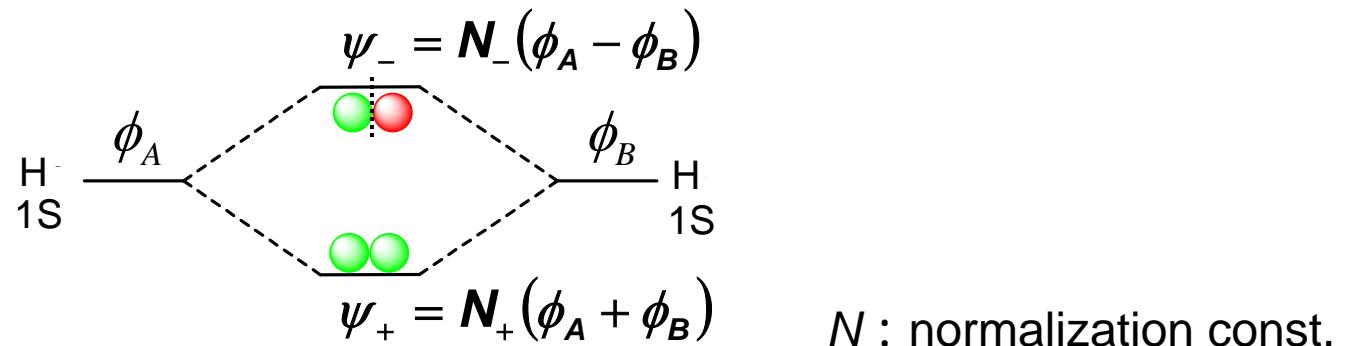
$$\psi_N = c_{N1}\phi_1 + c_{N2}\phi_2 + c_{N3}\phi_3 + \dots + c_{NN}\phi_N$$

$$\psi_i = \sum_{j=1}^N c_{ij}\phi_j$$

ψ : molecular orbital

ϕ : atomic orbital wave function

Ex : H_2^+



$$\int \psi_+^2 d\tau = 1 = N_+^2 \int (\phi_A + \phi_B)^2 d\tau$$

$$\Rightarrow \frac{1}{N_+^2} = \int \phi_A^2 d\tau + 2 \boxed{\int \phi_A \phi_B d\tau} + \int \phi_B^2 d\tau = 2 + 2S_{AB}$$

$$\therefore N_+ = \frac{1}{\sqrt{2 + 2S_{AB}}} \quad \text{Overlap integral } S_{AB}$$

$$\int \psi_-^2 d\tau = 1$$

$$\Rightarrow N_- = \frac{1}{\sqrt{2 - 2S_{AB}}}$$

if $\psi = \psi_+$

$$\begin{aligned} E_+ &= \frac{\int \psi^+ H \psi^+ d\tau}{\int \psi^+ \psi^+ d\tau} = N^2 \int (\phi_A + \phi_B) H (\phi_A + \phi_B) d\tau \\ &= \frac{1}{2+2S} \left[\int \phi_A H \phi_A d\tau \overset{\textcolor{blue}{H_{AA}}}{+} \int \phi_A H \phi_B d\tau \overset{\textcolor{blue}{H_{AB}}}{+} \int \phi_B H \phi_A d\tau \overset{\textcolor{blue}{H_{BA}}}{+} \int \phi_B H \phi_B d\tau \overset{\textcolor{blue}{H_{BB}}}{+} \right] \end{aligned}$$

let

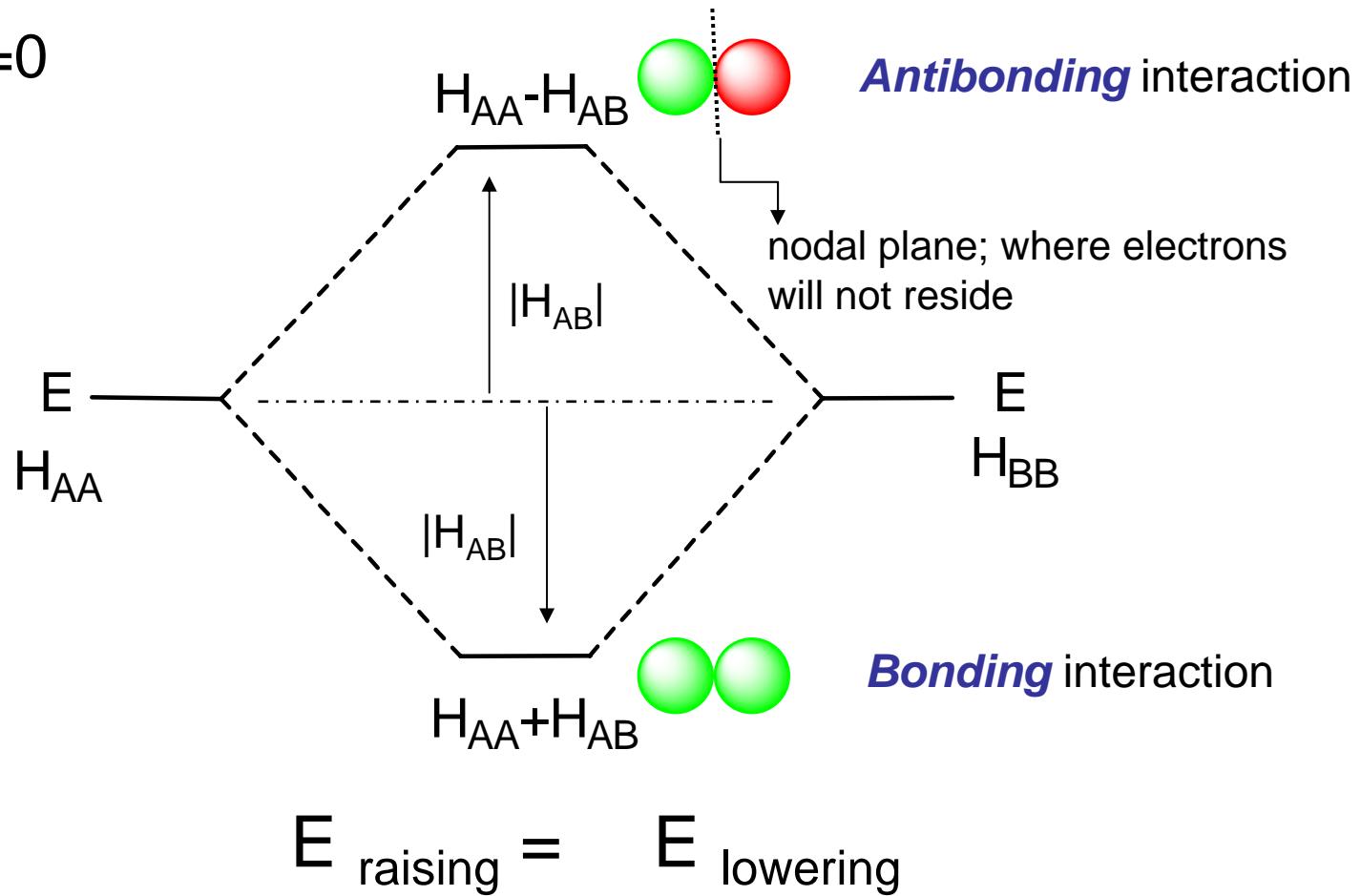
$$H_{AB} = \int \phi_A H \phi_B d\tau$$

$$H_{AB} = H_{BA}$$

$$\therefore E_+ = \frac{2H_{AA} + 2H_{AB}}{2+2S} = \frac{H_{AA} + H_{AB}}{1+S} \overset{\textcolor{blue}{<0}}{\underset{\textcolor{blue}{>0}}{}} \quad E_- = \frac{2H_{AA} - 2H_{AB}}{2-2S} = \frac{H_{AA} - H_{AB}}{1-S}$$

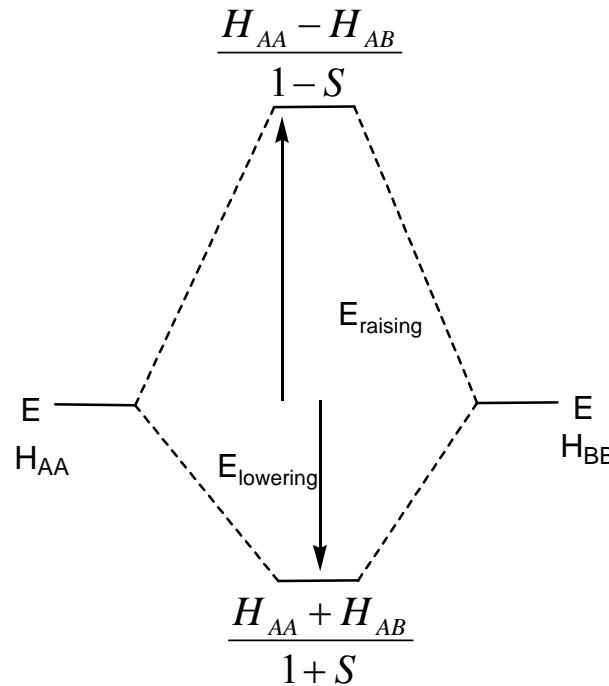
$$E_+ = \frac{2H_{AA} + 2H_{AB}}{2+2S} = \frac{H_{AA} + H_{AB}}{1+S} \quad E_- = \frac{2H_{AA} - 2H_{AB}}{2-2S} = \frac{H_{AA} - H_{AB}}{1-S}$$

If $S=0$



In reality $S \neq 0$

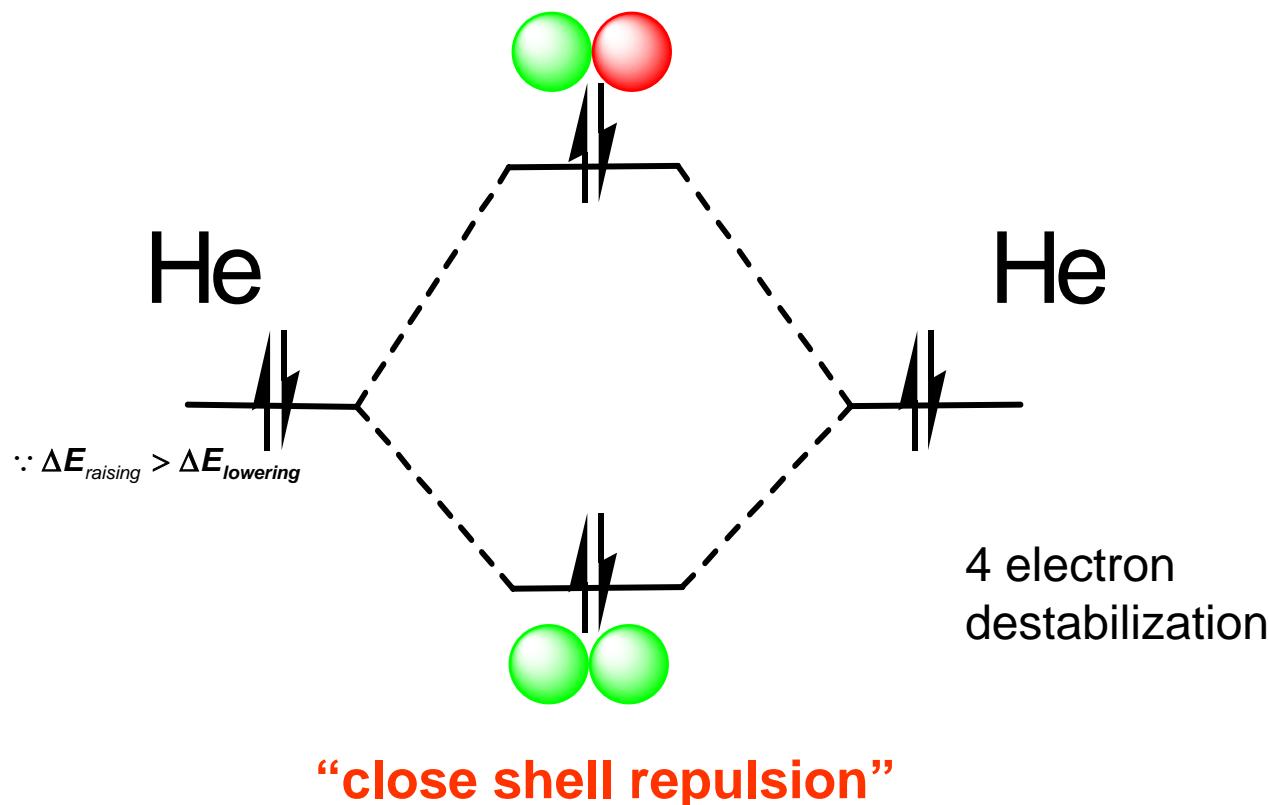
★ For two degenerate orbitals



$$\therefore \Delta E_{raising} > \Delta E_{lowering}$$

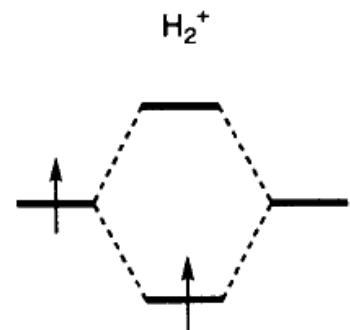
$$\begin{aligned}\Delta E_{raising} &> 0, 1 - S > 0 \\ \Rightarrow SH_{AA} - H_{AB} &> 0\end{aligned}$$

$$\begin{aligned}\Delta E_{raising} &= \frac{H_{AA} - H_{AB}}{1 - S} - H_{AA} \\ &= \frac{H_{AA} - H_{AB} - H_{AA} + SH_{AA}}{1 - S} = \frac{SH_{AA} - H_{AB}}{1 - S} \\ \Delta E_{lowering} &= H_{AA} - \frac{H_{AA} + H_{AB}}{1 + S} \\ &= \frac{H_{AA} + SH_{AA} - H_{AA} - H_{AB}}{1 + S} = \frac{SH_{AA} - H_{AB}}{1 + S} \\ \Delta E_{raising} - \Delta E_{lowering} &= \frac{SH_{AA} - H_{AB}}{1 - S} - \frac{SH_{AA} - H_{AB}}{1 + S} \\ &= (SH_{AA} - H_{AB}) \left(\frac{1}{1 - S} - \frac{1}{1 + S} \right) \\ &= (SH_{AA} - H_{AB}) \left(\frac{2S}{1 - S^2} \right) \\ &\quad > 0 \qquad > 0\end{aligned}$$

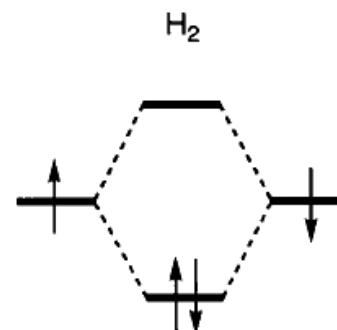


It is known that inert gas does not dimerize.

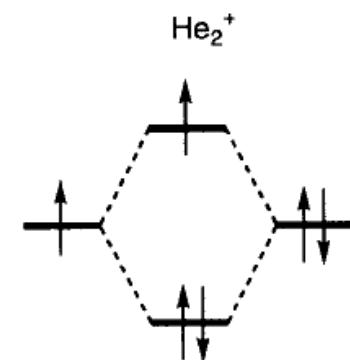
Consequence of filling electrons into **bonding** and **antibonding** orbitals:



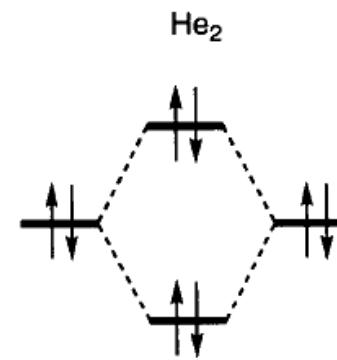
One-electron stabilization
 $R = 1.06 \text{ \AA}$
Bond Energy = 61 kcal/mol



Two-electron stabilization
 $R = 0.74 \text{ \AA}$
Bond Energy = 103 kcal/mol



Three-electron stabilization
 $R = 1.08 \text{ \AA}$
Bond Energy $\approx 50 \text{ kcal/mol}$



Nonexistent
Repulsive four electron interaction

Notice the trends:

1. Electron in **bonding** orbital — bond length decreases; bond energy increases
2. Electron in **antibonding** orbital — bond length increases; bond energy decreases

TABLE 14-1

Stability of Some Homonuclear Diatomics as Predicted by QMOT and as Observed from Experiment or ab Initio Calculation

Molecule	QMOT	Experimental or <i>ab initio</i>	Molecule	QMOT	Experimental or <i>ab initio</i>
H_2^+	Stable	Stable	Be_2^+	Stable	Stable
H_2	Stable	Stable	Be_2	Not stable	Not stable
H_2^-	Stable	Stable ^a	Na_2^+	Stable	Stable
He_2^+	Stable	Stable	Na_2	Stable	Stable
He_2	Not stable	Not stable	Na_2^-	Stable	?
Li_2^+	Stable	Stable	Mg_2^+	Stable	?
Li_2	Stable	Stable	Mg_2	Not stable	Stable (?)
Li_2^-	Stable	Stable			

^a This molecule-ion is unstable with respect to losing an electron and forming this neutral molecule at its lowest energy, but it is stable with respect to dissociation into a neutral atom and a negative ion in their ground states.

For Na and Mg, 3s and 3p orbitals are very close in energy, unrealistic to treat as pure 3s cases.

Notice energies of bonding and antibonding orbitals **may crossover**. Therefore, simple QMOT results with limited molecular orbital interactions may not be correct!

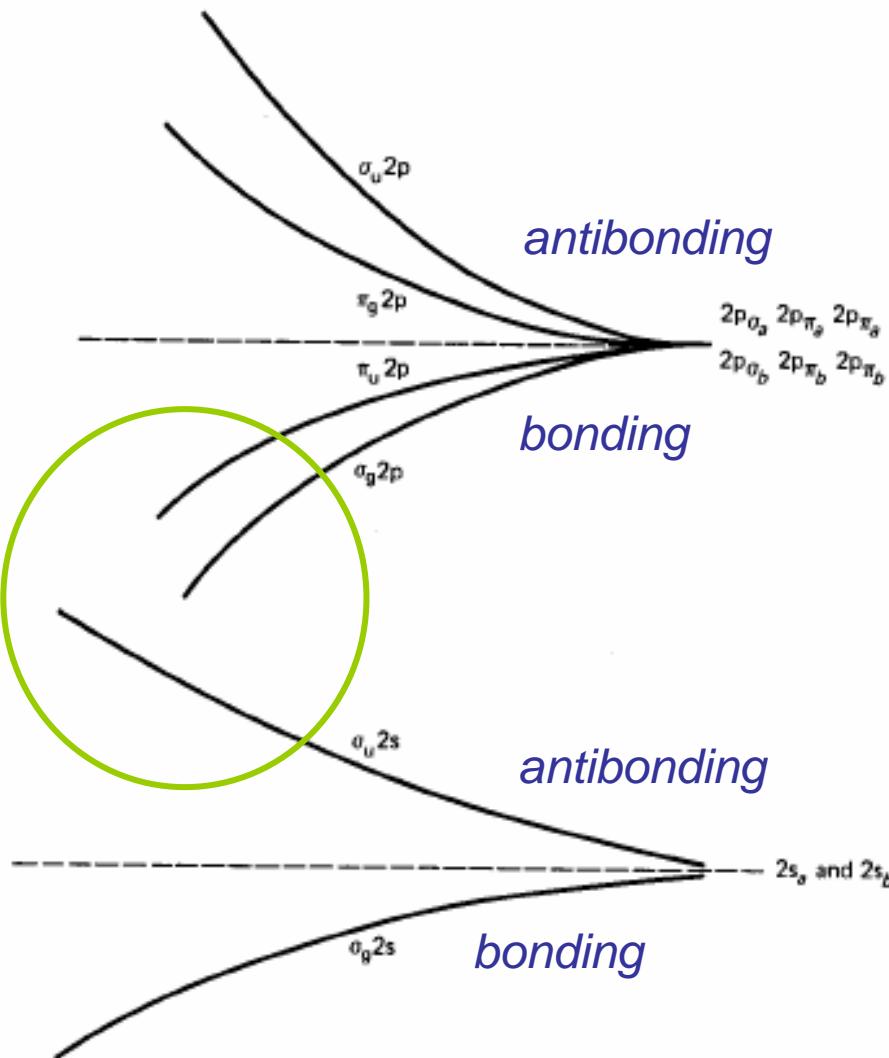
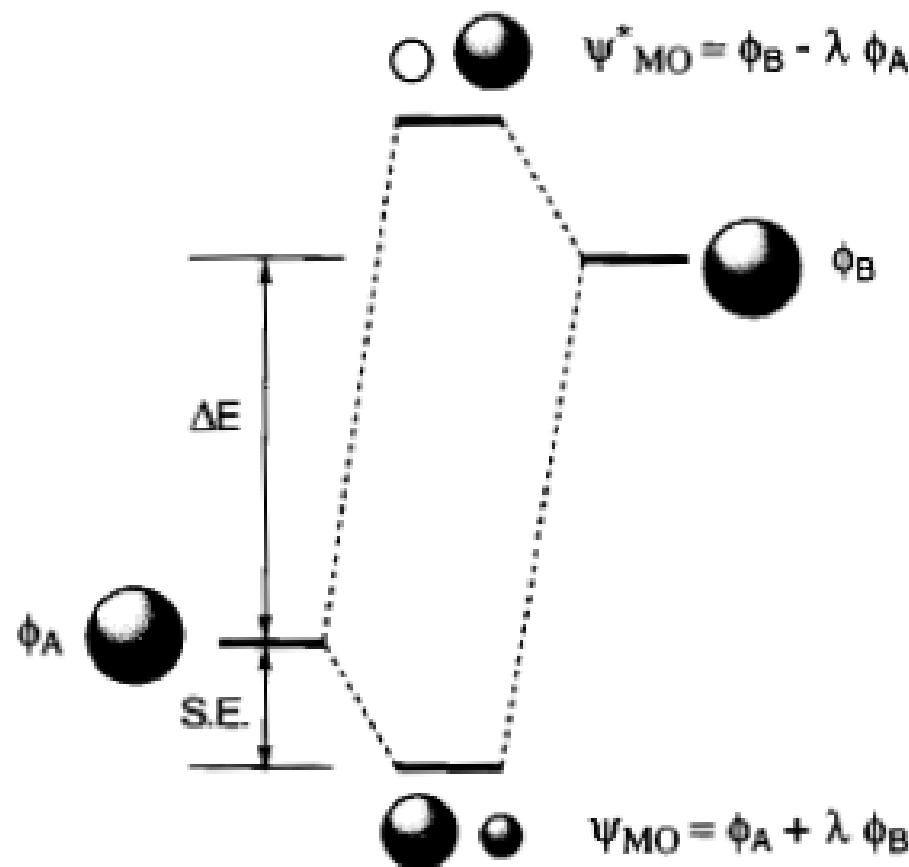


FIG. 14-5 Qualitative sketches of homonuclear diatomic MO energies as a function of R based on QMOT rules.

★ For two nondegenerate orbitals

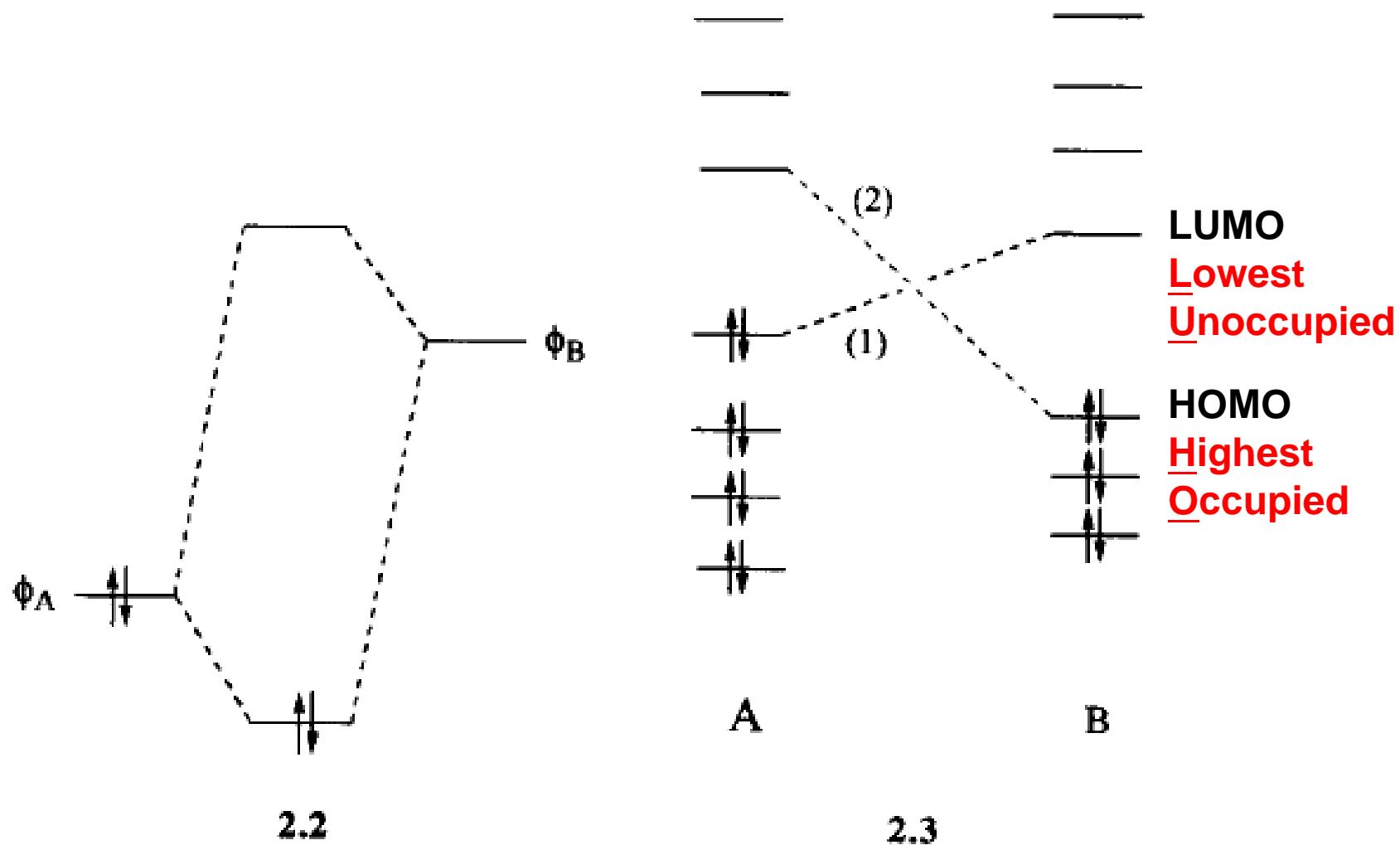


$$\lambda \propto \frac{S_{AB}}{\Delta E}$$

$$SE \propto \frac{S_{AB}^2}{\Delta E}$$

Rules in QMOT :

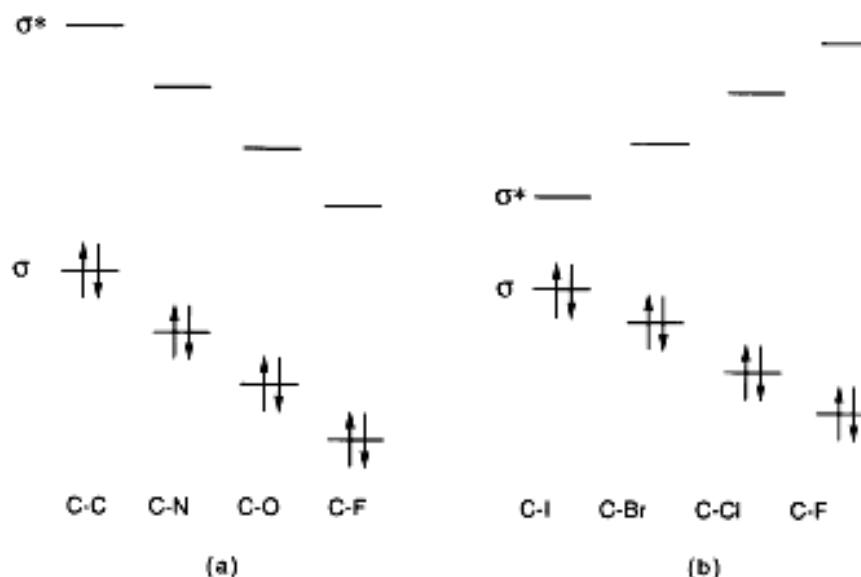
- 1) occupied orbital repel occupied orbital
- 2) S , SE (Stabilization Energy)
- 3) closer in energy, SE



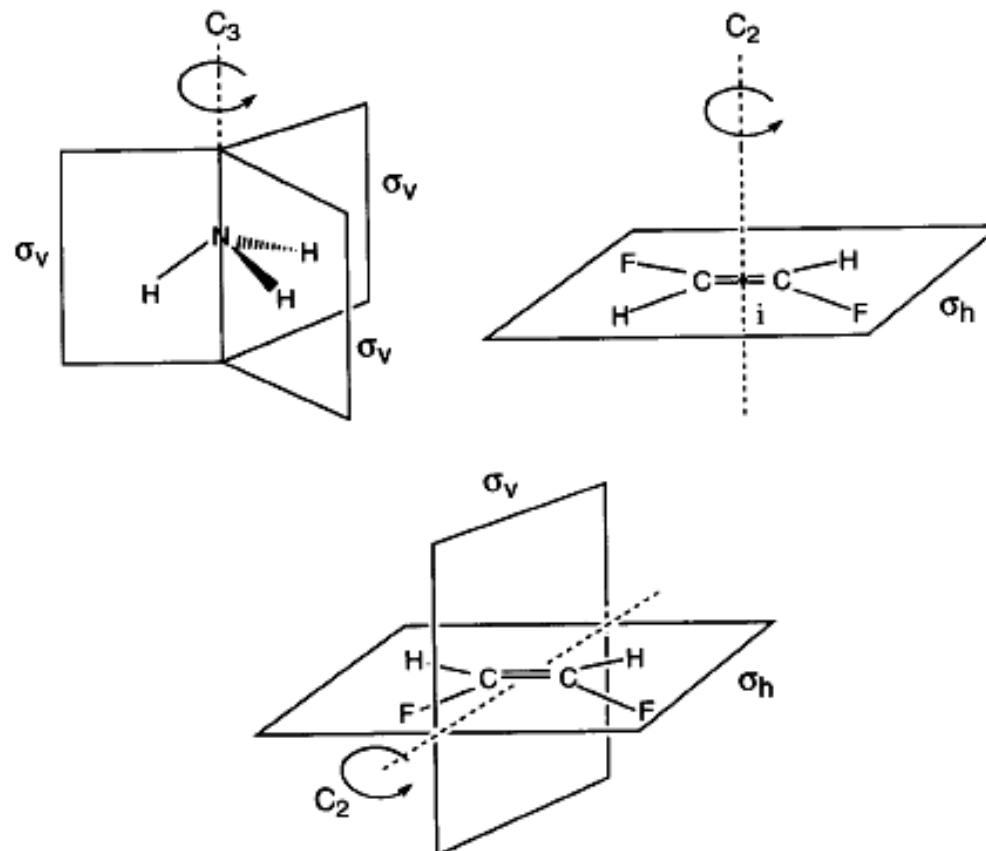
**Occupied orbital interacts with unoccupied orbital => Lowering energy
HOMO–LUMO interaction important!**

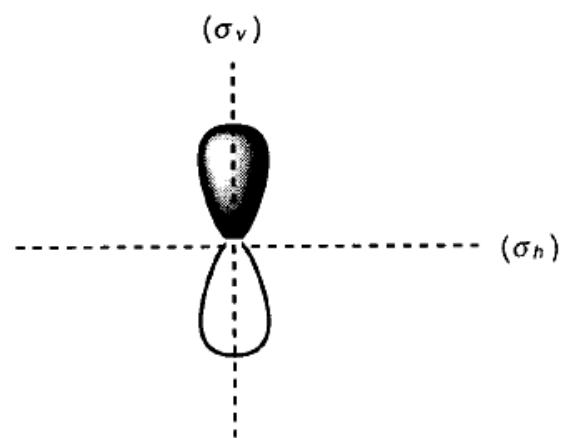
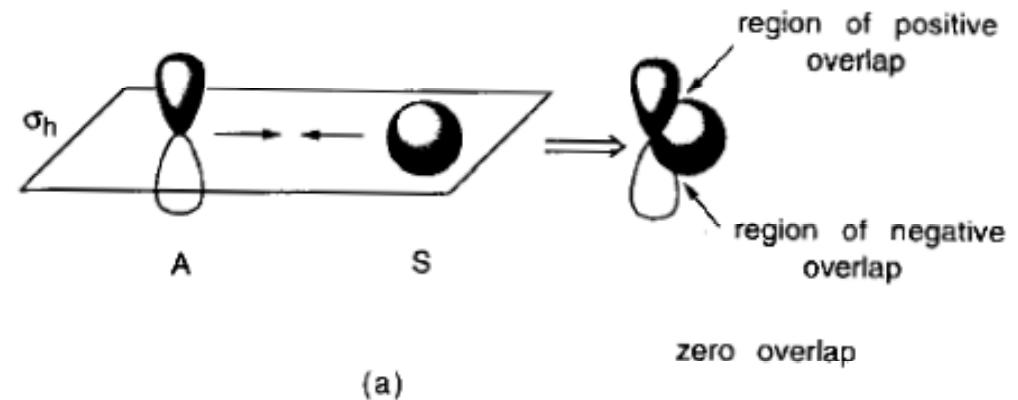
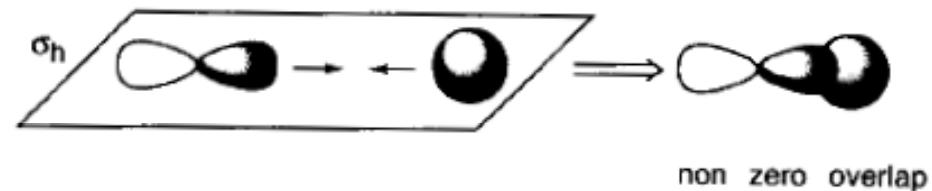
➤ General rules for determining relative orbital energies

1. bonding < nonbonding < antibonding
2. σ orbitals < π orbitals < π^* orbitals < σ^* orbitals
3. AO energies decrease along a row of the periodic table. C 2p > N 2p > O 2p > F 2p =>
 $\sigma_{C-C} > \sigma_{C-N} > \sigma_{C-O} > \sigma_{C-F}$; $\sigma^*_{C-C} > \sigma^*_{C-N} > \sigma^*_{C-O} > \sigma^*_{C-F}$
4. $\sigma_{C-I} > \sigma_{C-Br} > \sigma_{C-Cl} > \sigma_{C-F}$; $\sigma^*_{C-F} > \sigma^*_{C-Cl} > \sigma^*_{C-Br} > \sigma^*_{C-I}$



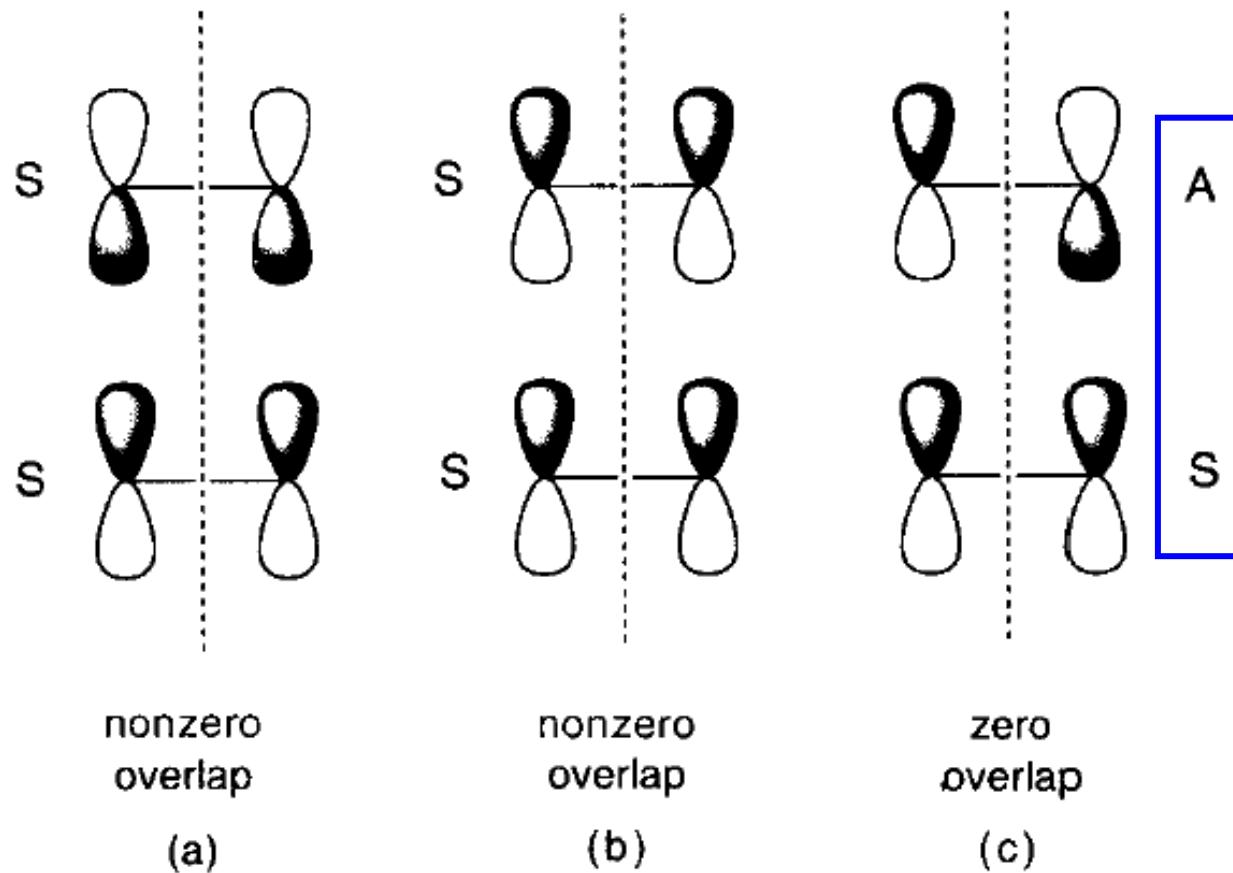
➤ Symmetry and orbital overlap





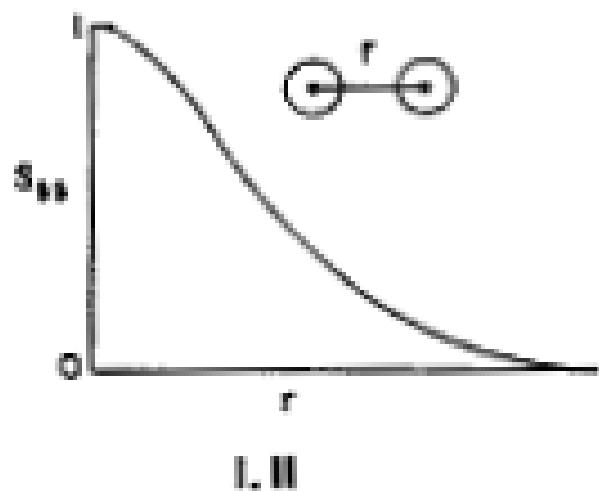
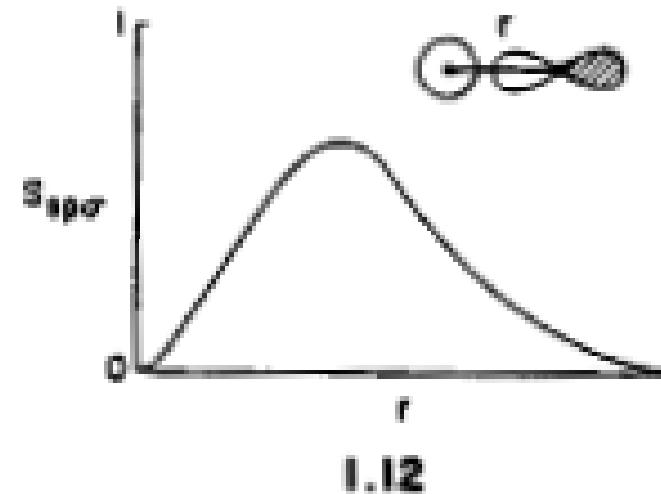
A: antisymmetric S: symmetric

Wrong symmetry will result in zero overlap!

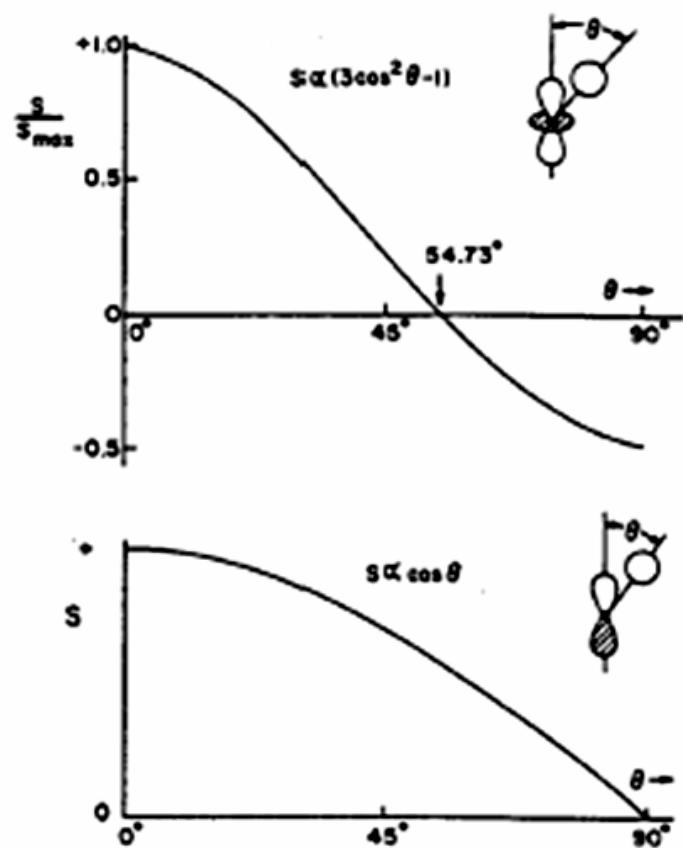
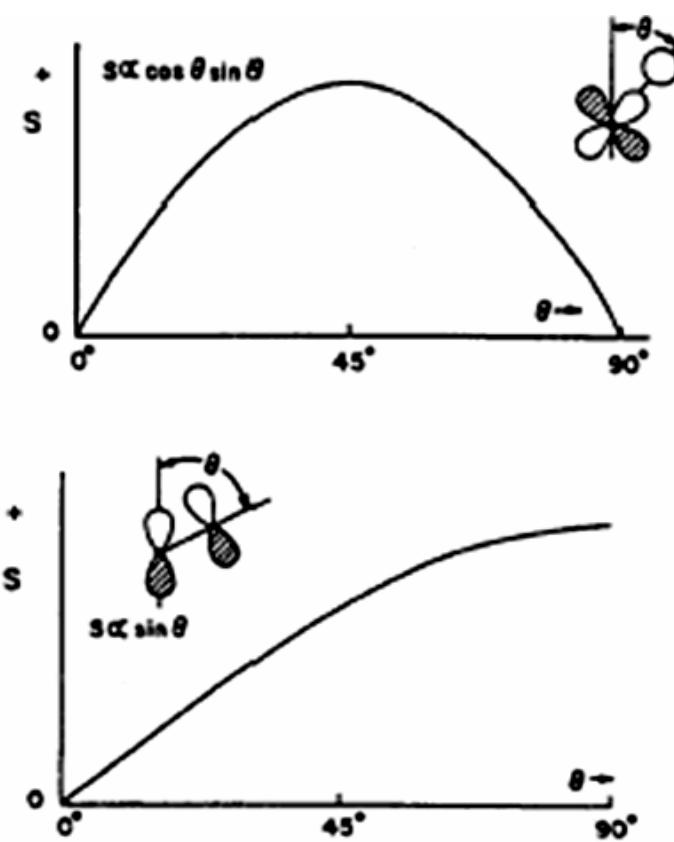


Wrong
Symmetry!

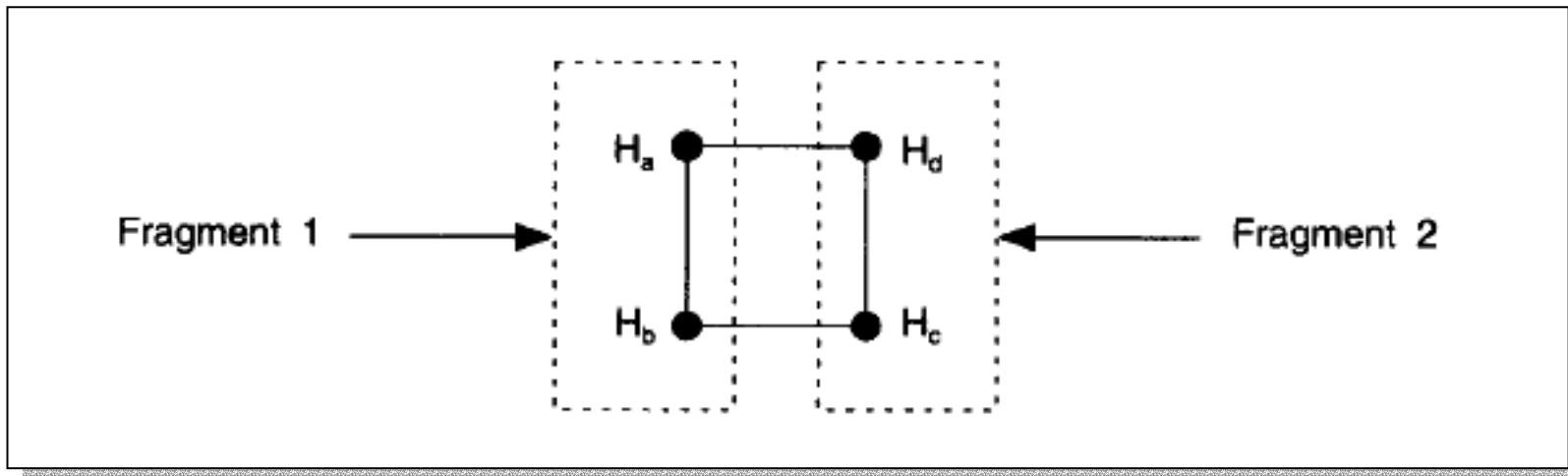
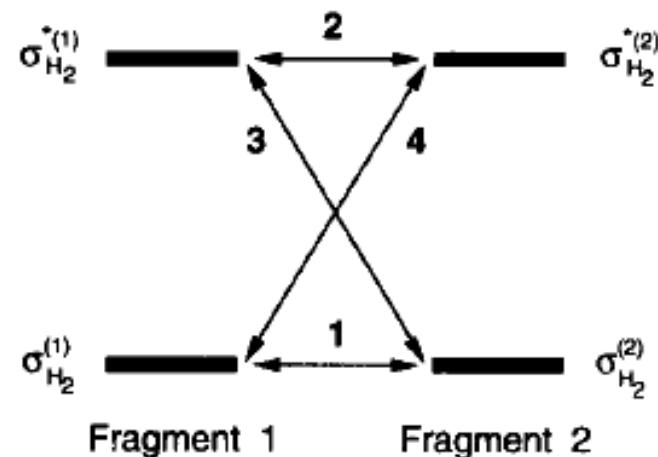
- Overlap integral S vs r



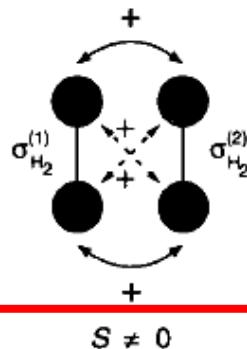
- Overlap integral S vs angle



Ex: H_4 (square)

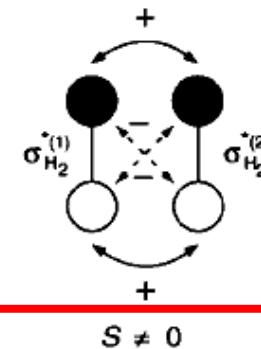


Among interactions 1, 2, 3, and 4, which ones are valid?



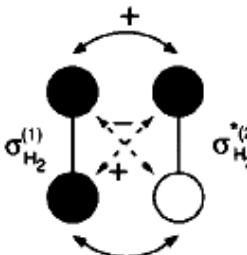
Interactions 1 and 2

$S \neq 0$



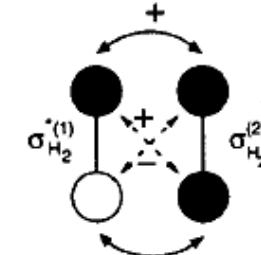
$S \neq 0$

*Will result in
energy splitting!*



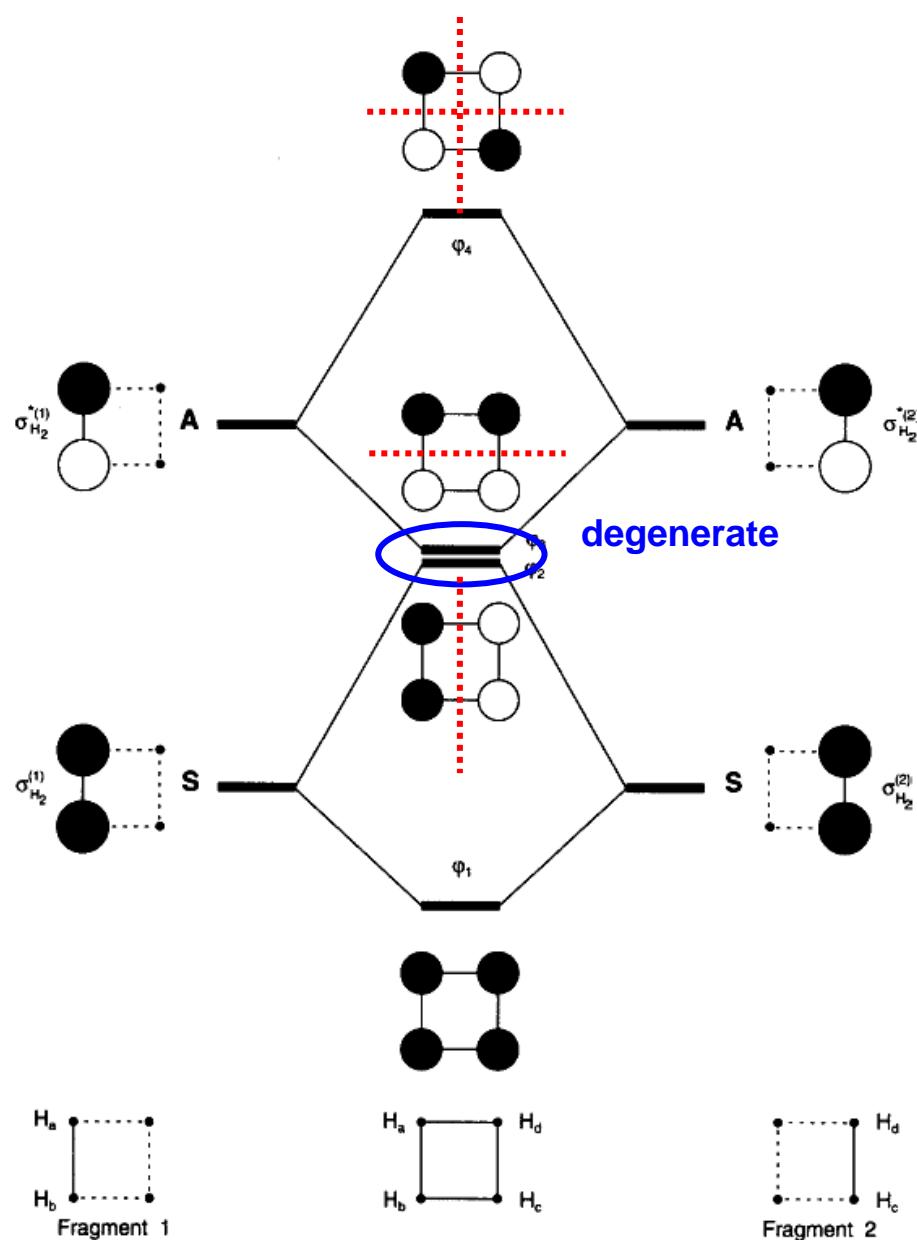
Interactions 3 and 4

$S = 0$



$S = 0$

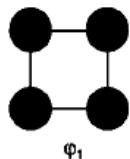
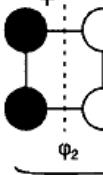
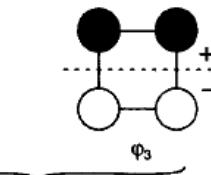
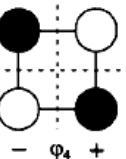
No interaction!



$$\begin{aligned}\phi_1 &= \sigma_{\text{H}_2}(1) + \sigma_{\text{H}_2}(2) \\ \phi_2 &= \sigma_{\text{H}_2}(1) - \sigma_{\text{H}_2}(2) \\ \phi_3 &= \sigma_{\text{H}_2}^*(1) + \sigma_{\text{H}_2}^*(2) \\ \phi_4 &= \sigma_{\text{H}_2}^*(1) - \sigma_{\text{H}_2}^*(2)\end{aligned}$$

**More nodal plane,
higher in energy**

Figure 4.1. Construction of the MOs of square planar H_4 .



$$\phi_1 = N_1(1s_a + 1s_b + 1s_c + 1s_d)$$

$$\phi_2 = N_2(1s_a + 1s_b - 1s_c - 1s_d)$$

$$\phi_3 = N_3(1s_a - 1s_b - 1s_c + 1s_d)$$

$$\phi_4 = N_4(1s_a - 1s_b + 1s_c - 1s_d)$$

$$\langle 1s_a | 1s_b \rangle = \langle 1s_a | 1s_d \rangle = \langle 1s_b | 1s_c \rangle = \langle 1s_c | 1s_d \rangle = S$$

$$\langle 1s_a | 1s_c \rangle = \langle 1s_b | 1s_d \rangle = S'$$

$$\langle 1s_i | 1s_i \rangle = 1 (i = a, b, c, d)$$

$$\langle \phi_1 | \phi_1 \rangle = 1 = N_1^2(4 + 8S + 4S')$$

$$N_1 = \frac{1}{2(1 + 2S + S')^{1/2}}$$

$$N_2 = N_3 = \frac{1}{2(1 - S')^{1/2}}$$

$$N_4 = \frac{1}{2(1 - 2S + S')^{1/2}}$$

When the side of the square is 1 Å, $S = 0.469$, $S' = 0.263$

$$N_1 = 0.337, N_2 = N_3 = 0.582, N_4 = 0.877$$

Ex: H_4 (rectangular)

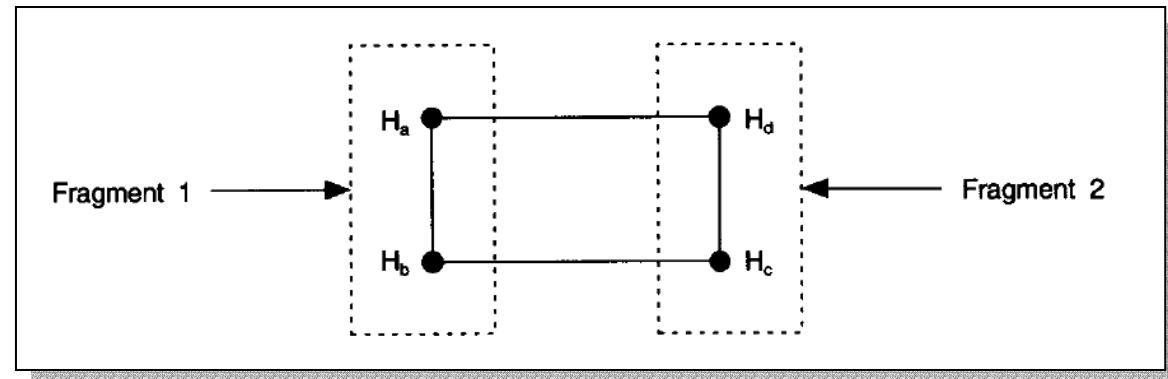
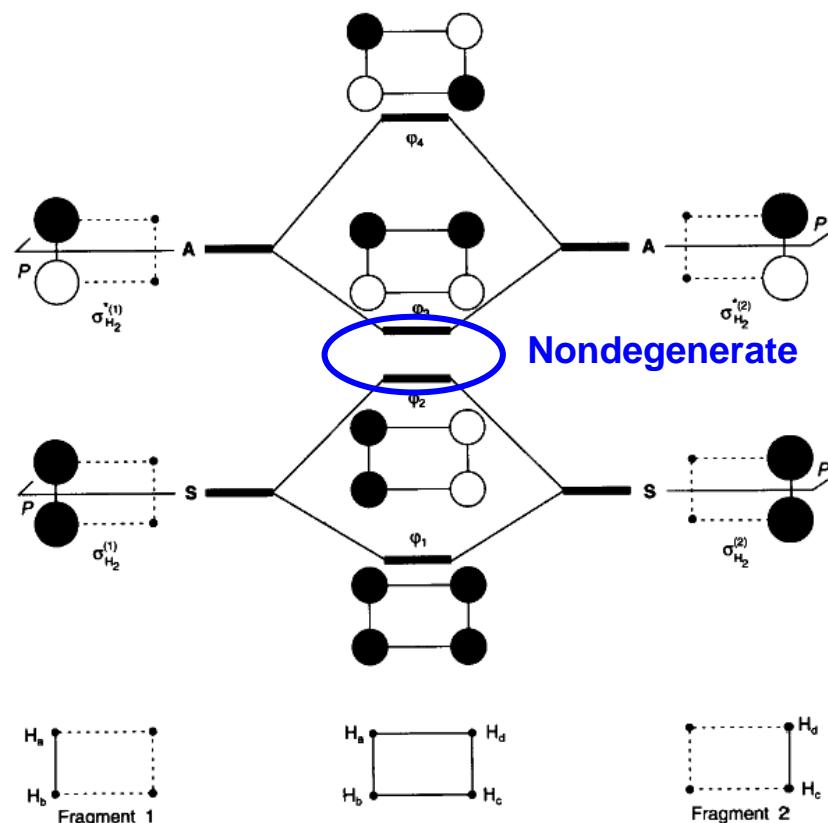
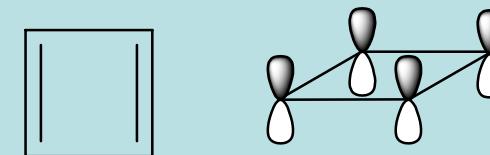


Figure 4.2. Construction of the MOs of rectangular H_4 .

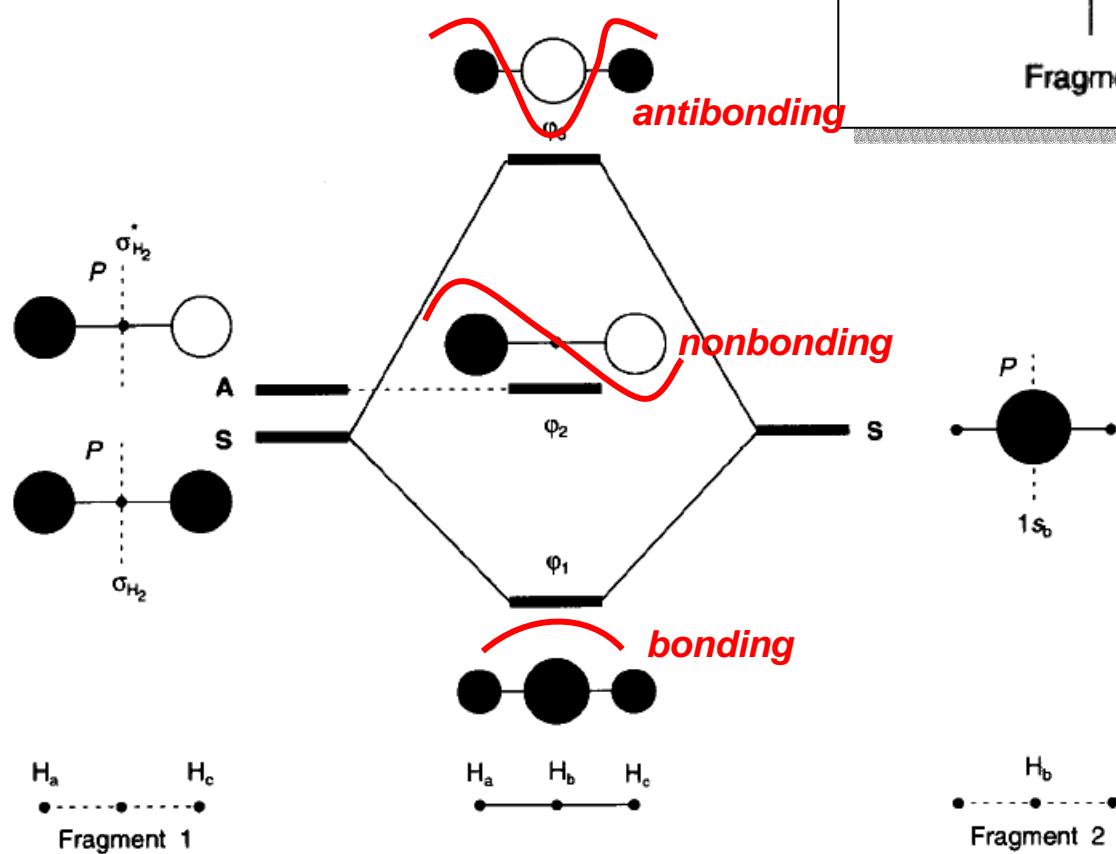
This explain why cyclobutadiene is a closed-shell molecule and is rectangular



cyclobutadiene

Jahn-Teller effect: geometry distort to destroy degeneracy and get closed-shell species with lower energy

Ex: H_3 (linear)



Notice the population
Of H_b is large in ϕ_1 and
 ϕ_3 ?

Figure 4.3. Construction of the MOs of linear H_3 .

Ex: H_3 (triangular)

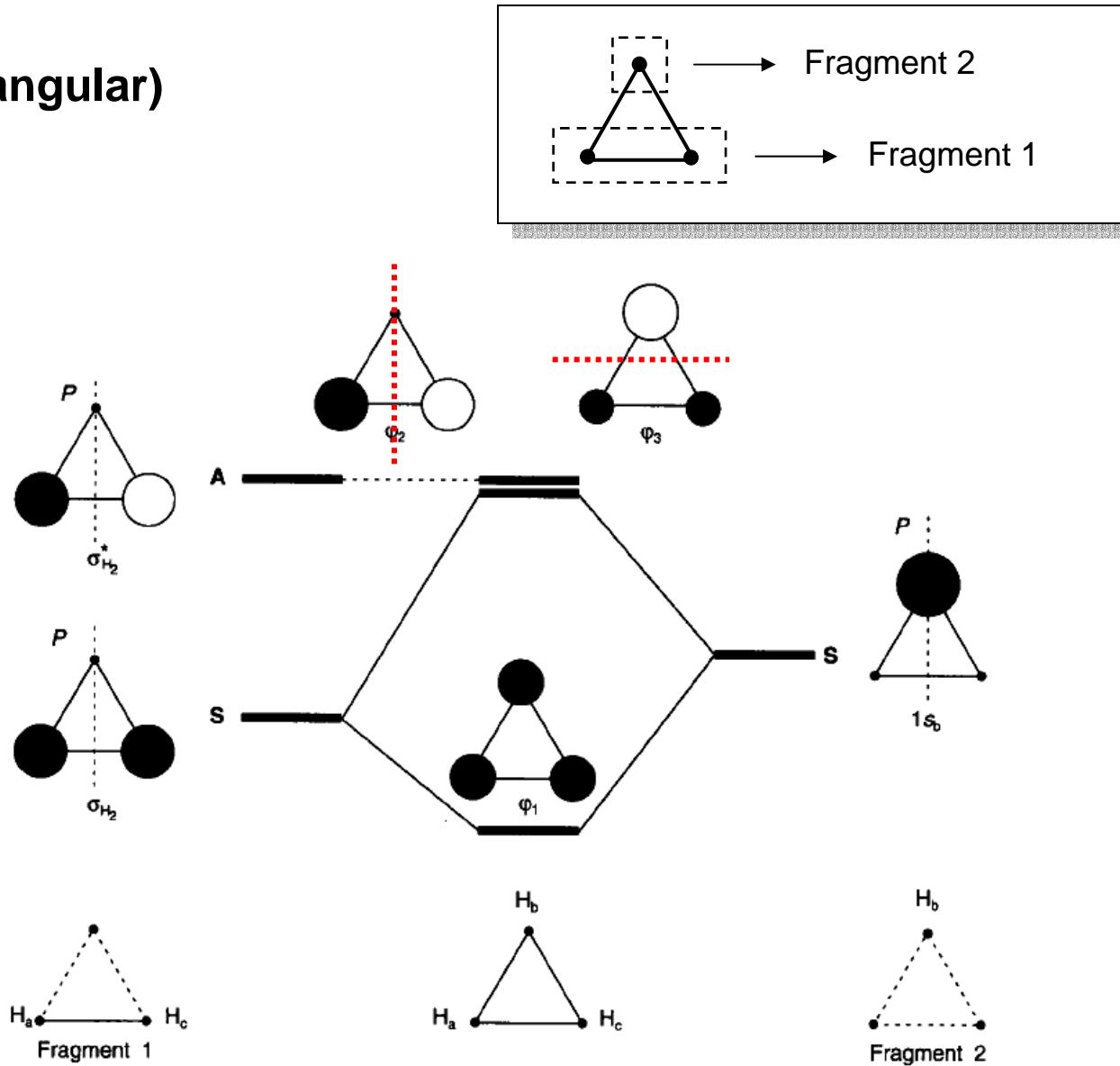


Figure 4.5. Construction of the MOs of triangular H_3 .

➤ Geometry and orbital correlation diagram

Experimentally, H_3^+ is found to be triangular and H_3^- linear

- Orbital correlation diagram for bending H_3

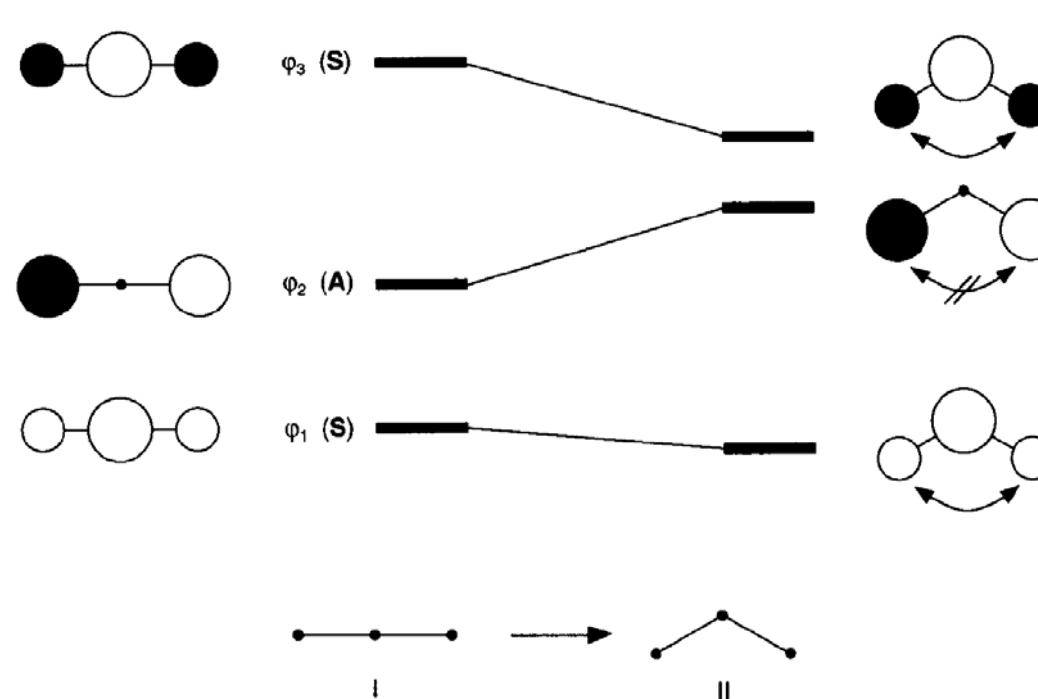


Figure 9.1. Energetic evolution of the MOs of an H_3 unit on bending.

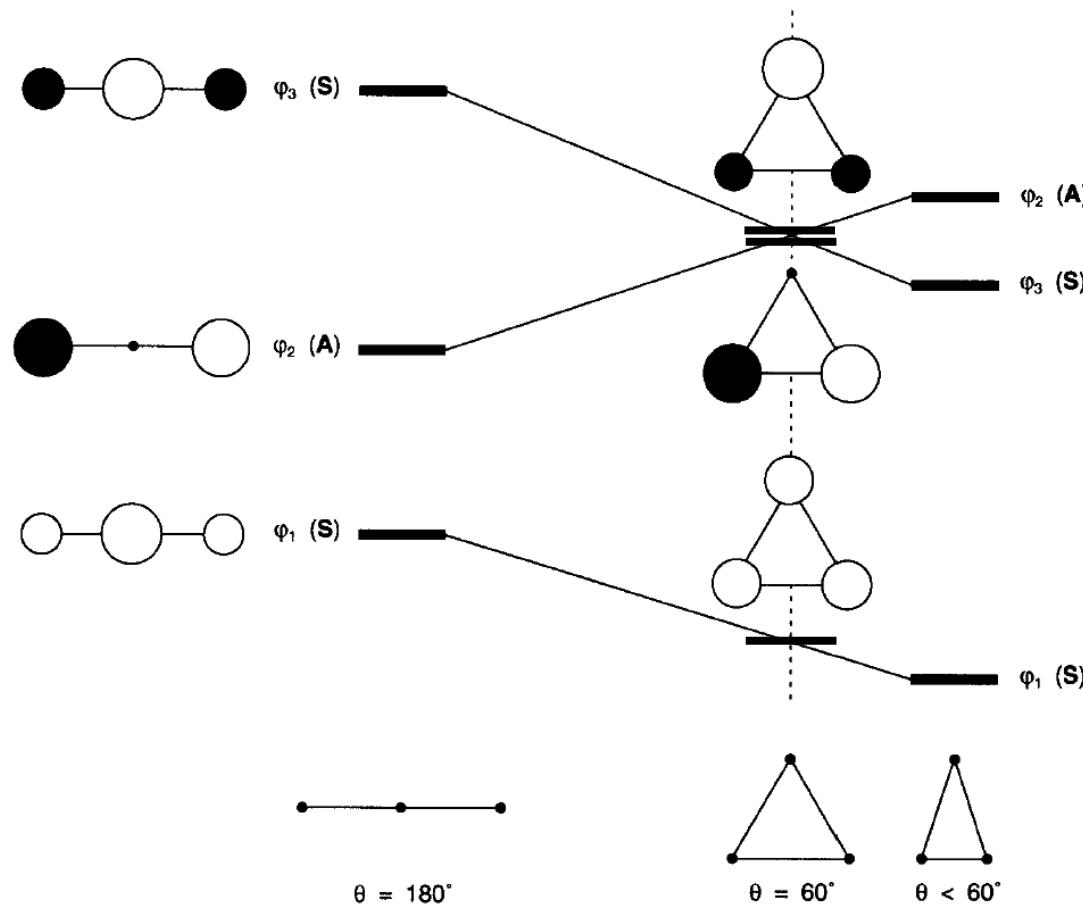
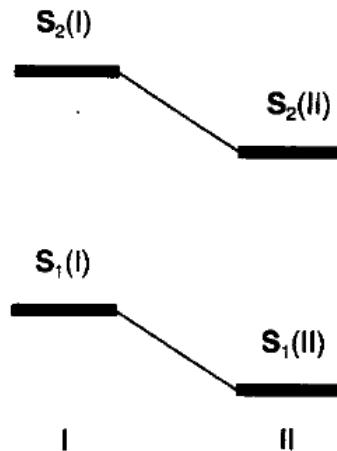


Figure 9.2. Orbital correlation diagram for the transformation H_3 (linear) to H_3 (triangular).

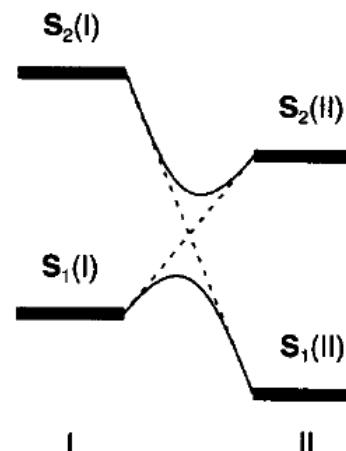
**Now do you understand why H_3^+ is triangular and H_3^- is linear?
Note: nuclear repulsion disfavor $\theta < 60^\circ$**

- Rules for orbital correlation diagram

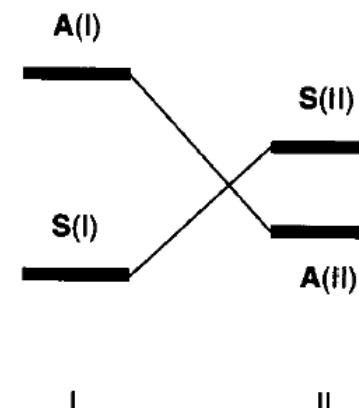
- Stabilization/destabilization of the MOs
 - bonding antibonding => energy lowering
 - bonding antibonding => energy increasing
- Conservation of orbital symmetry
- The non-crossing rule for MOs of the same symmetry



9-2a

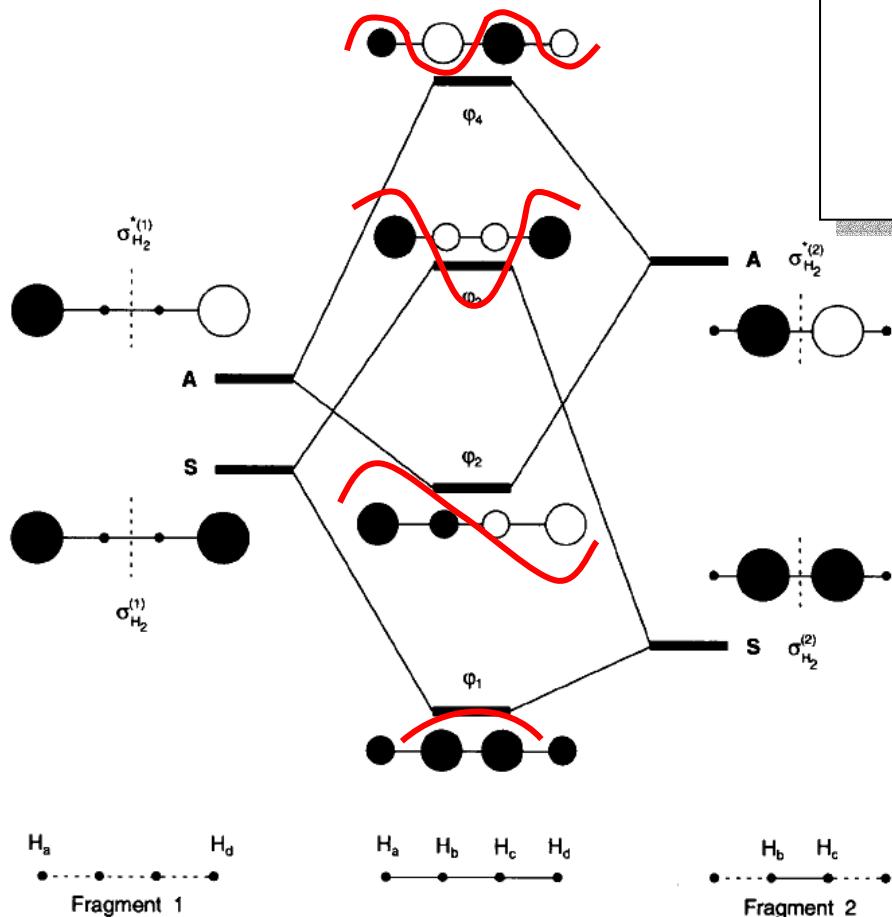
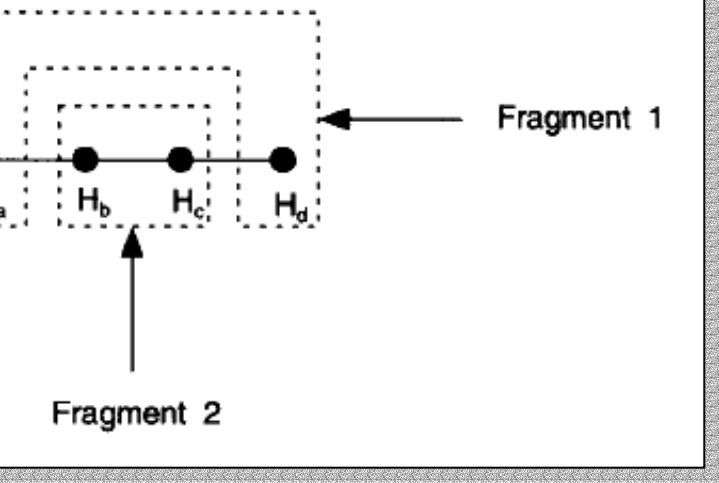


9-2b



9-2c

Ex: H_4 (linear)



More nodal plane,
higher in energy

Figure 4.4. Construction of the MOs of linear H_4 .

Ex: H_6 (hexagonal)

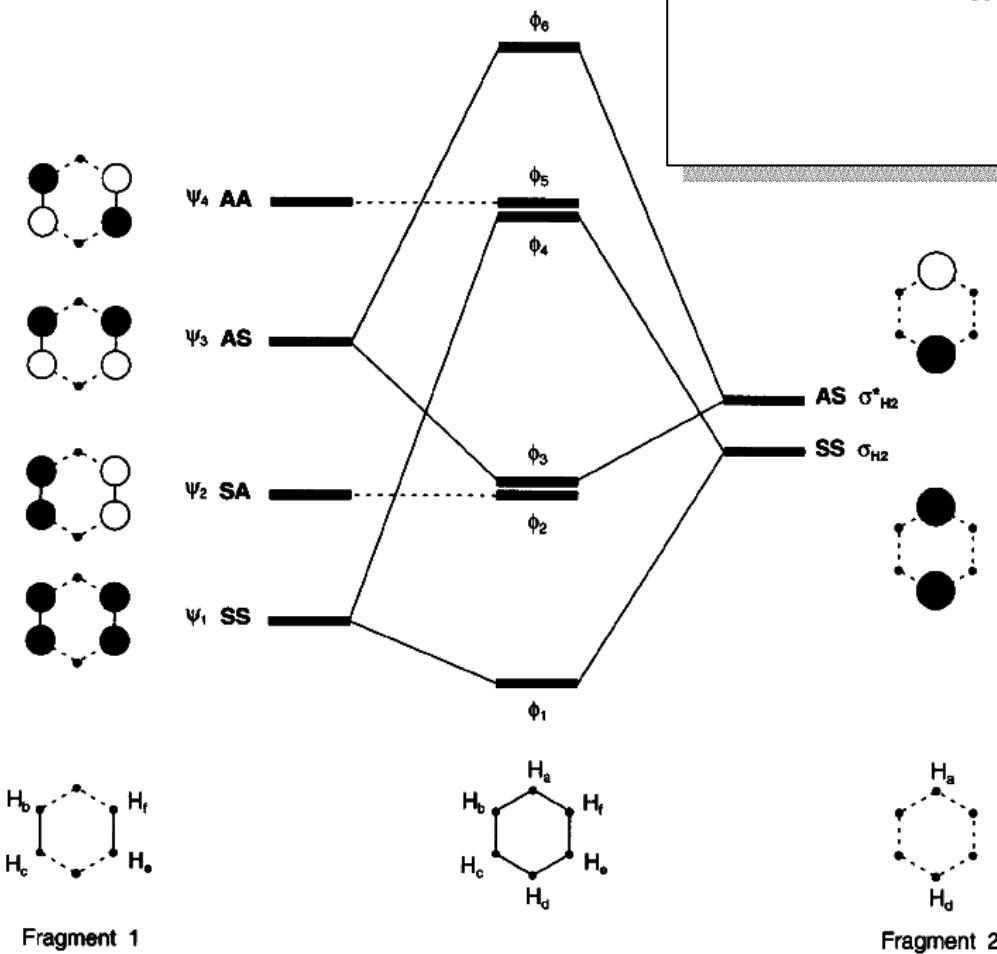
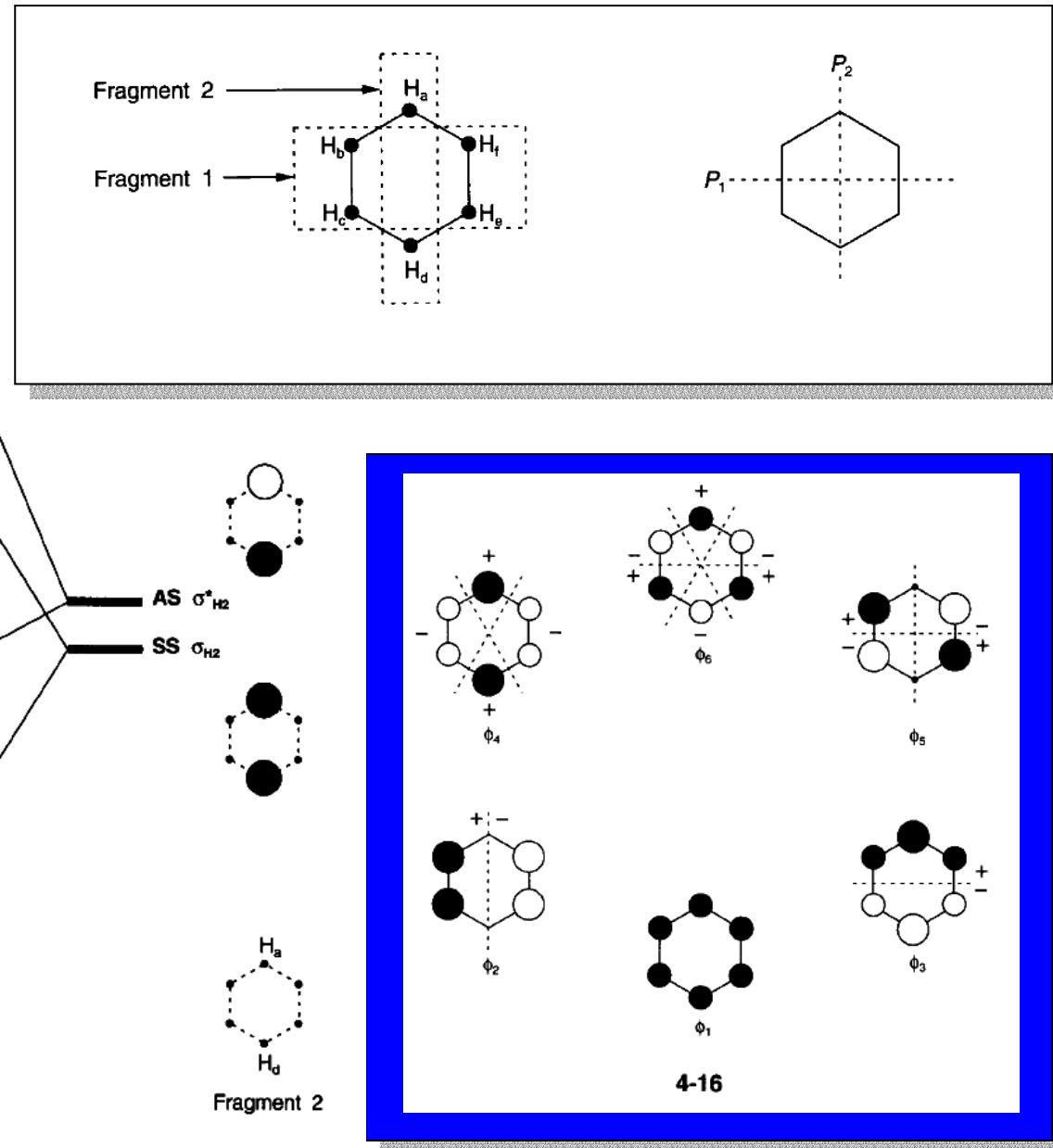
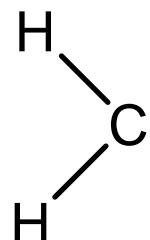


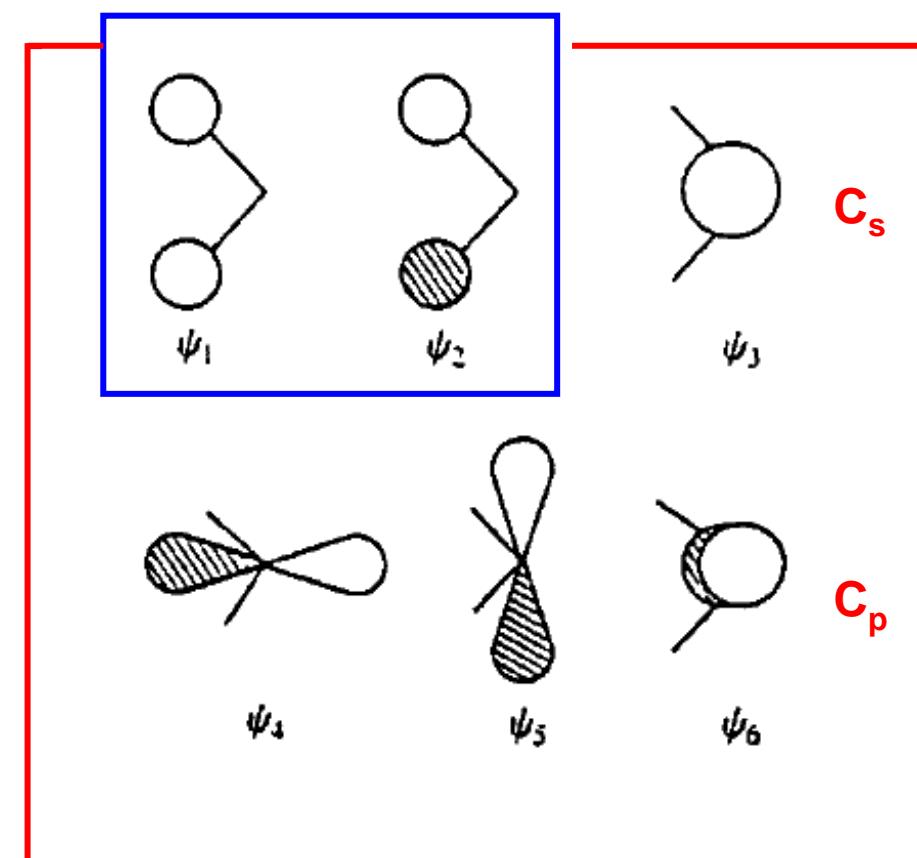
Figure 4.7. Construction of the MOs of hexagonal H_6 .

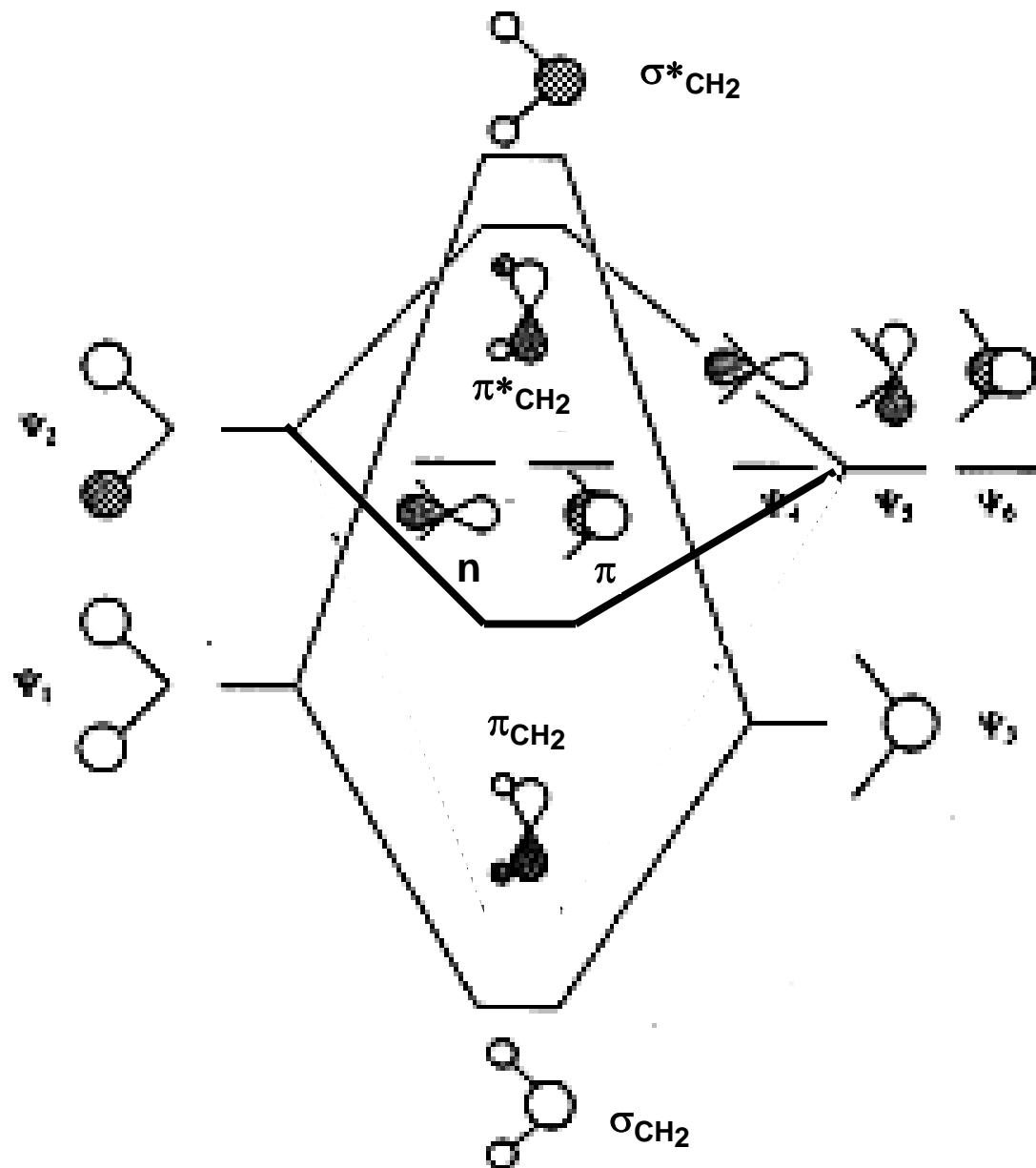
➤ Building up MOs of simple molecules

Ex: CH_2



Linear combination of H

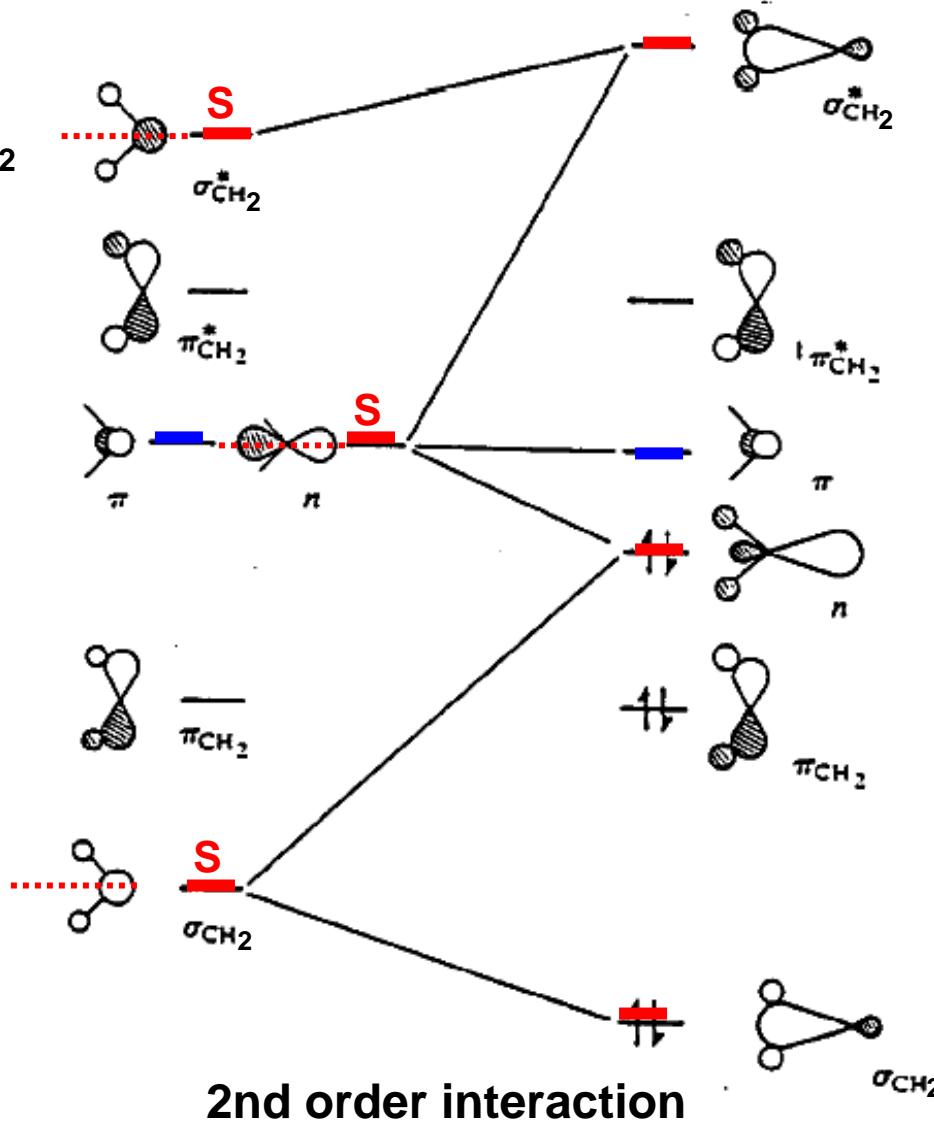




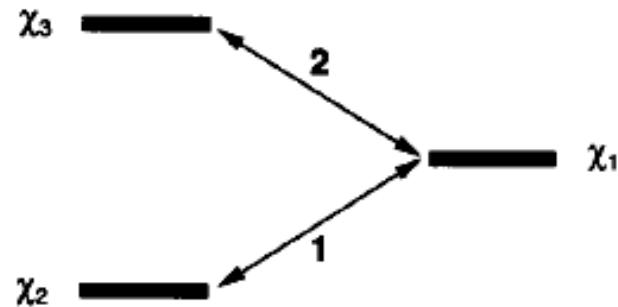
- Same symmetry
 Ψ_1, Ψ_3, Ψ_4
closer in energy
 Ψ_2, Ψ_5
- Energy difference
between $\pi_{\text{CH}_2} - \pi^*_{\text{CH}_2}$
smaller than
 $\sigma_{\text{CH}_2} - \sigma^*_{\text{CH}_2}$ because
of smaller overlap

- # of electrons in CH_2
 $4 + 1 + 1 = 6$

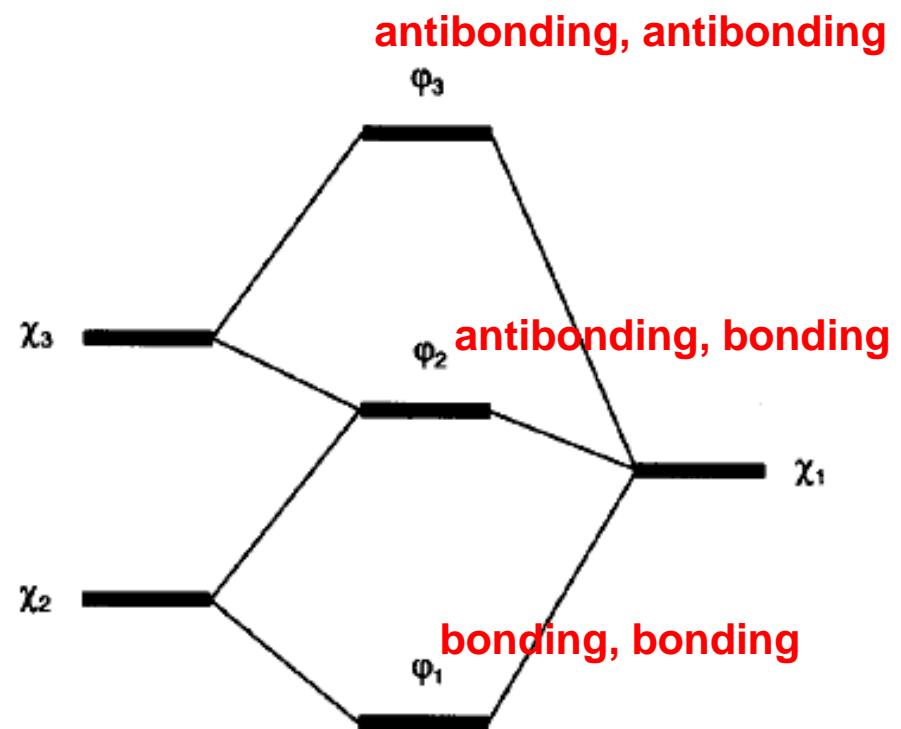
$\Psi_4 (n)$ is also of the same symmetry, should also Interact with hydrogens



- Three orbital interactions



6-1



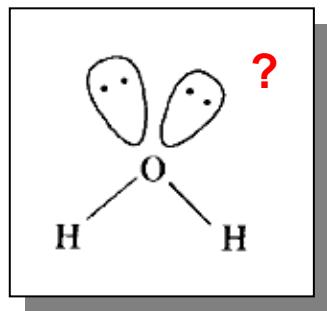
6-2

$$\varphi_1 = x_1 + x_2 + x_3$$

$$\varphi_2 = x_1 - x_2 + x_3$$

$$\varphi_3 = -x_1 - x_2 + x_3$$

- Nonequivalence of oxygen lone pairs in the water molecule



Photoelectron spectrum of water shows the lone pair orbitals are nonequivalent and are separated by 2.1 eV

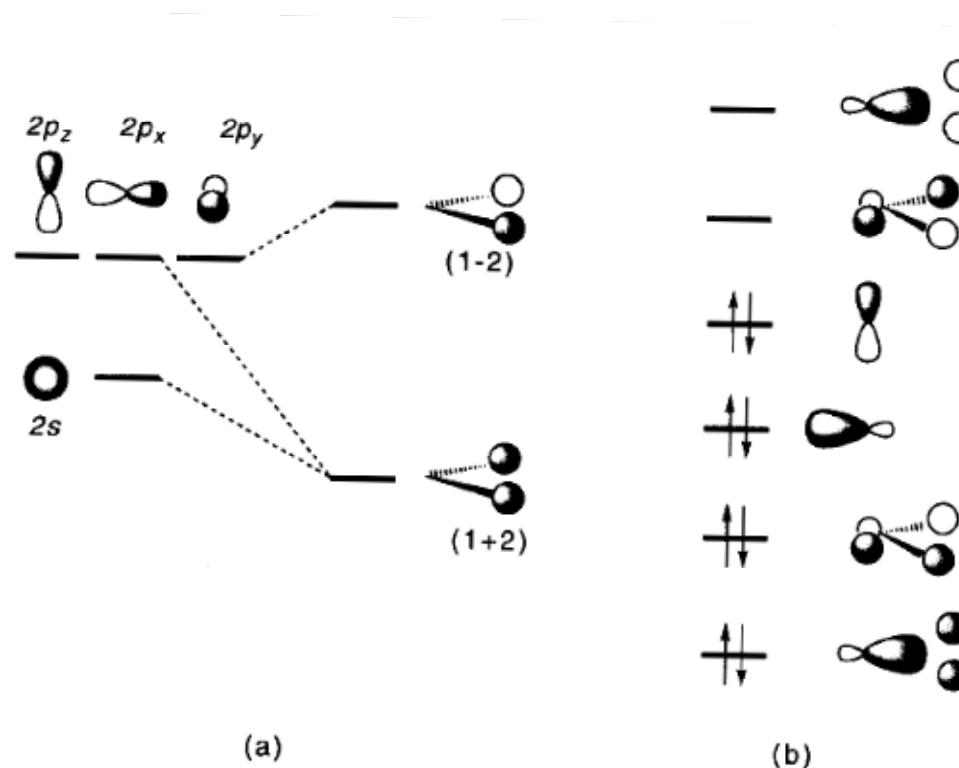


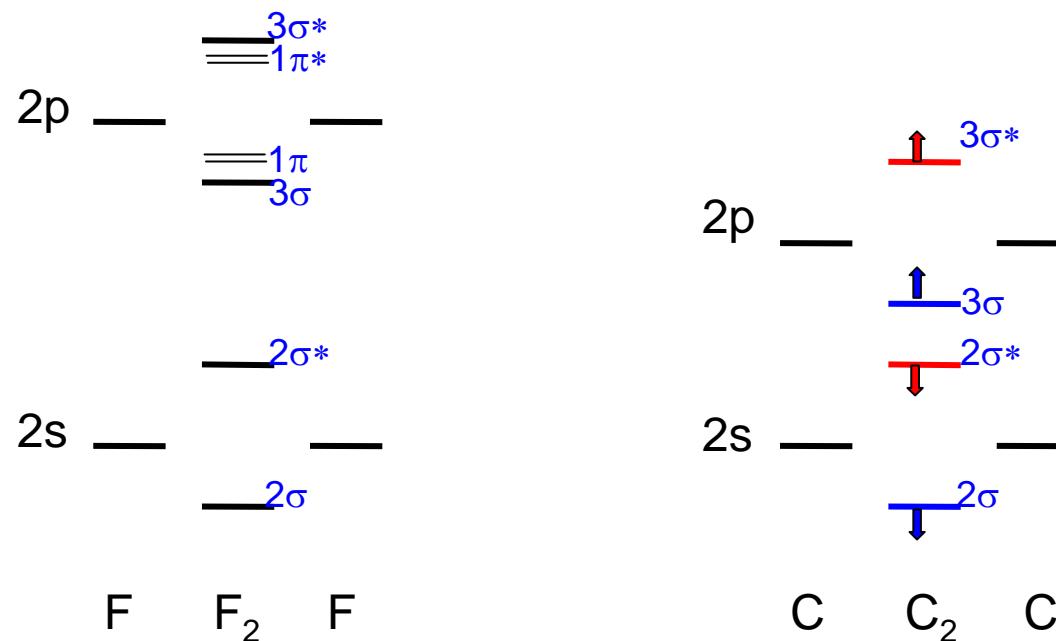
Fig. 2.24. Orbital diagram showing (a) the symmetry-allowed interactions between the set of O 2p orbitals and the two H_2 orbitals (1+2) and (1-2) in the H_2O molecule. (b) The set of MOs in the H_2O molecule obtained from the interaction of the orbitals in (a). Note that the two lone-pair orbitals in H_2O are not degenerate.

- Another example of 2nd order interaction differences in electronic structure of F_2 and C_2

F_2 : $(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(3\sigma)^2(1\pi)^4(1\pi^*)^4$

C_2 : $(1\sigma)^2(1\sigma^*)^2(2\sigma)^2(2\sigma^*)^2(1\pi_u)^4$ *why 3σ is not populated first?*

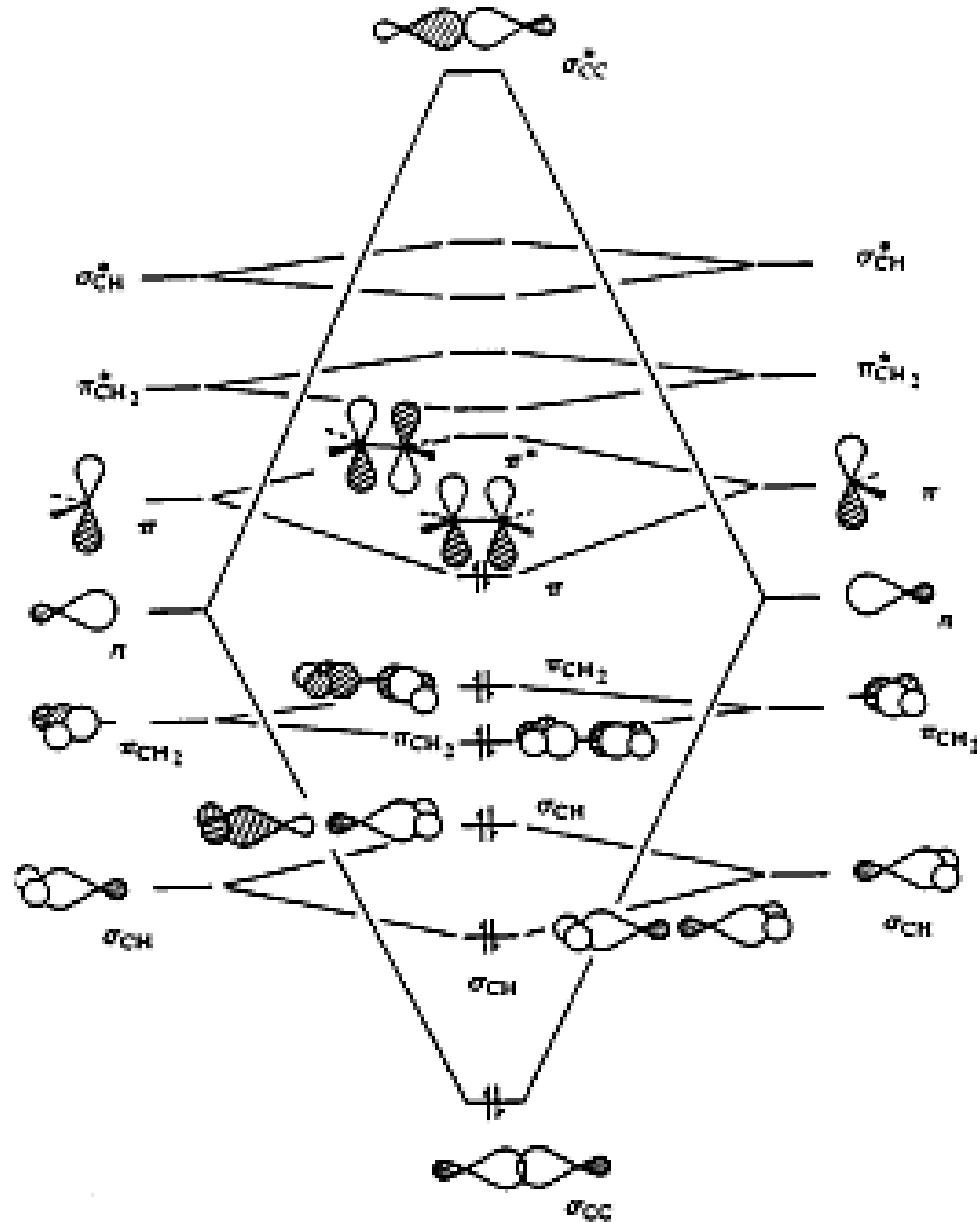
\Rightarrow *energy raised because of mixing of 2σ and 3σ (\because same symmetry)*



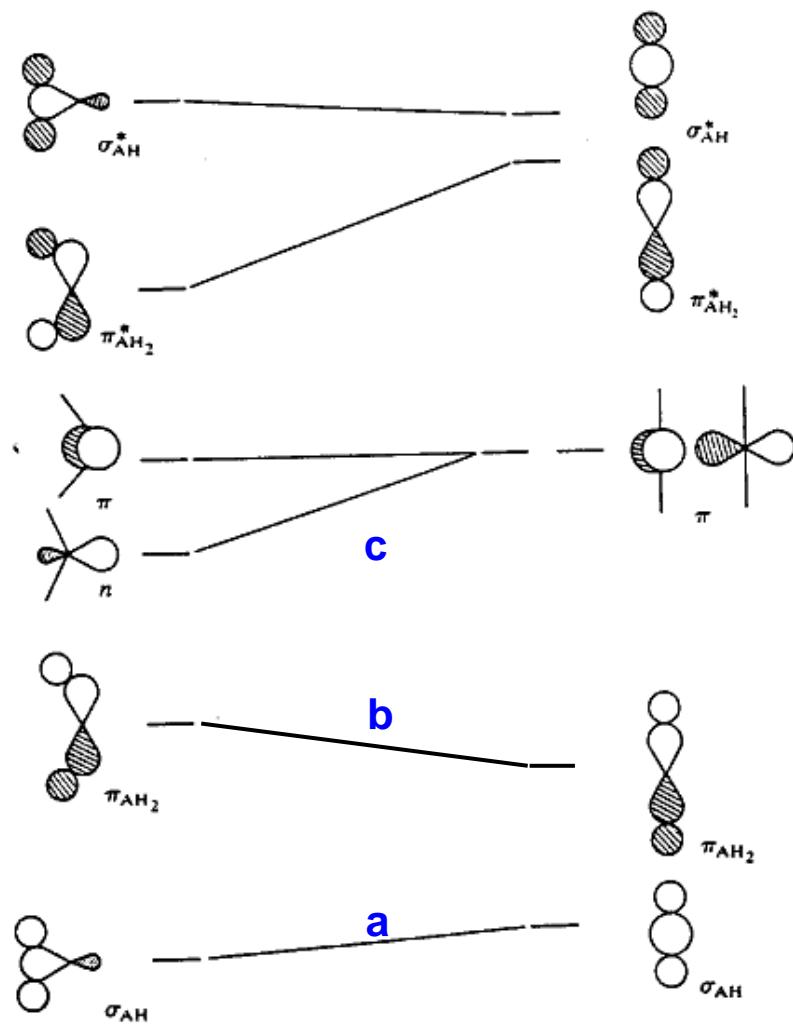
- Combine CH_2 and CH_2
to get $\text{CH}_2=\text{CH}_2$

The lone pairs (n) form
a σ bond and the π
orbitals form a π bond

Net bonding with 12
electrons:
1 σ bond
1 π bond



- Walsh diagram for correlating linear and bent AH_2

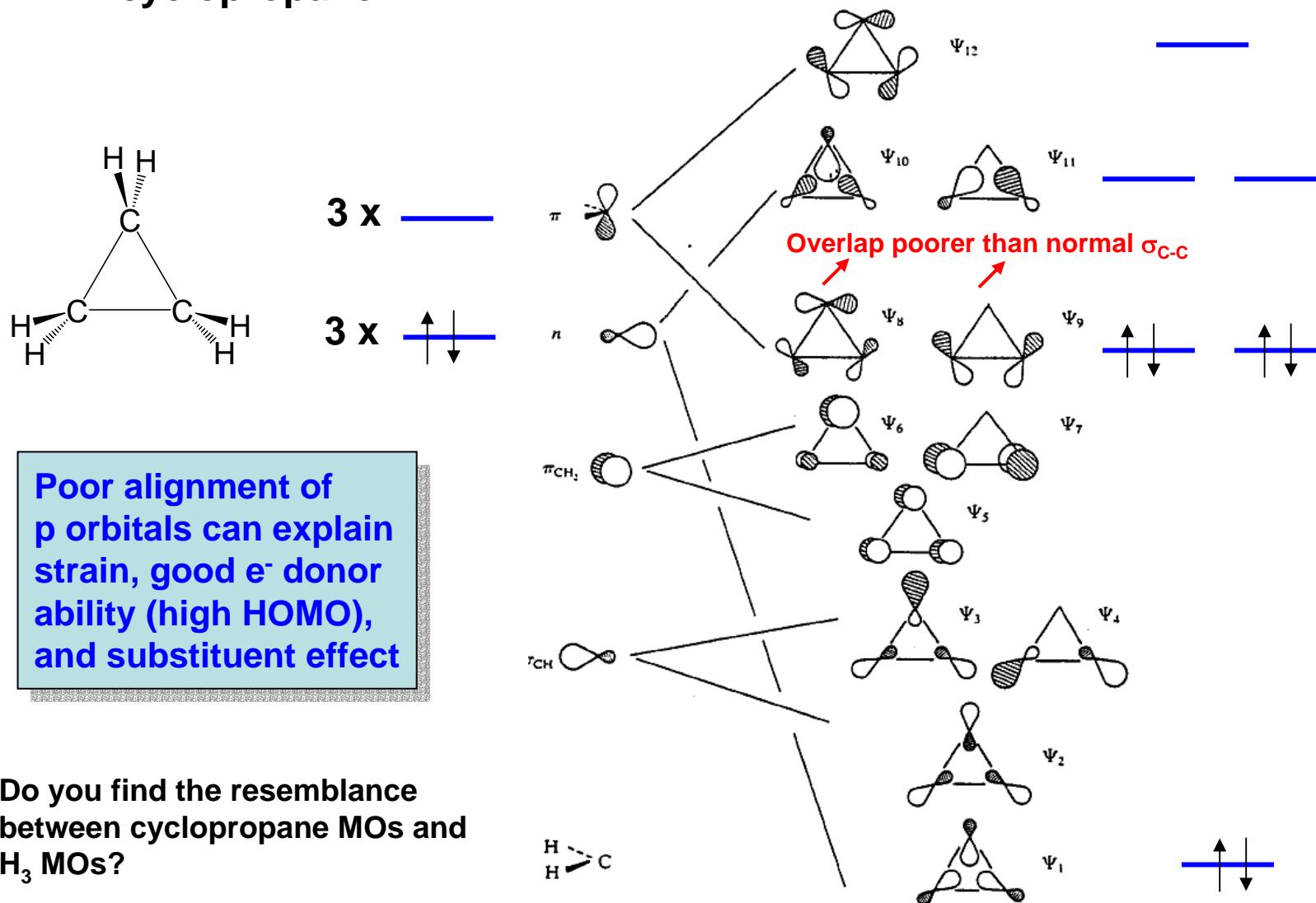


- a. i) weak bonding between H...H lost
ii) stabilization from p orbital lost
- b. i) H moves to maximum overlap
ii) out of phase H...H become further apart
- c. loses s character

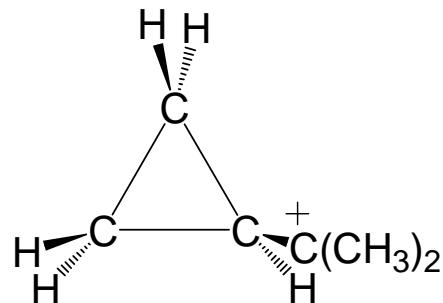
Walsh diagram provides rationales for

- Linear BeH_2 , BH_2^+ (4 e⁻)
- Bent CH_2 (6 e⁻)
- Bent H_2O (8 e⁻)

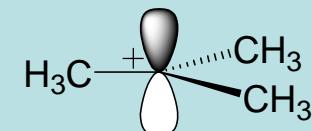
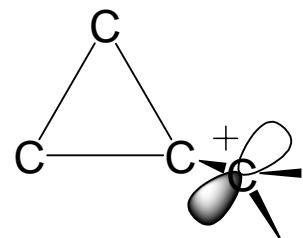
Ex: cyclopropane



Preferred structure of

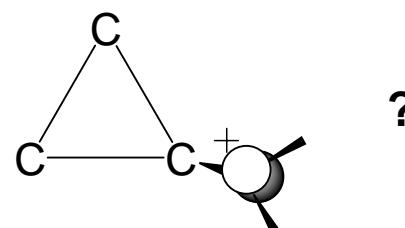


It is known that the cation part is planar



favored

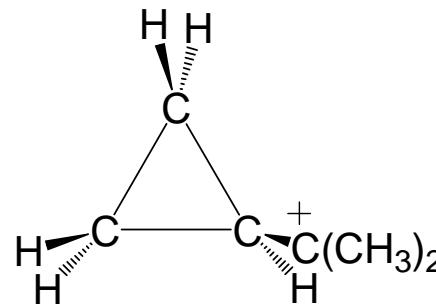
or



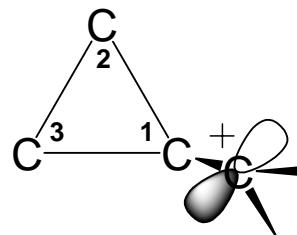
not favored

?

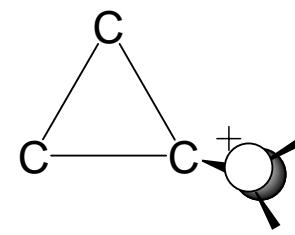
Structure of



**C₁-C₂ longer than
w/o the cation part
C₂-C₃ shorter**



favored



disfavored

How do you rationalize?

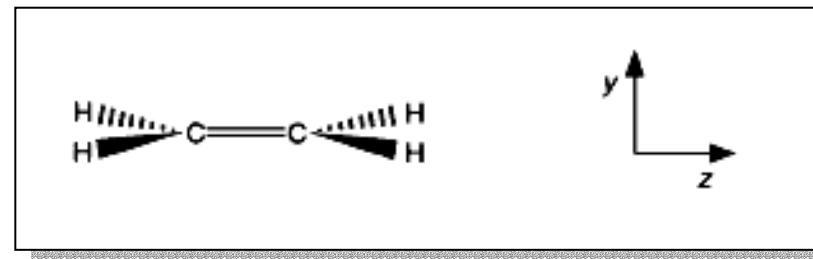
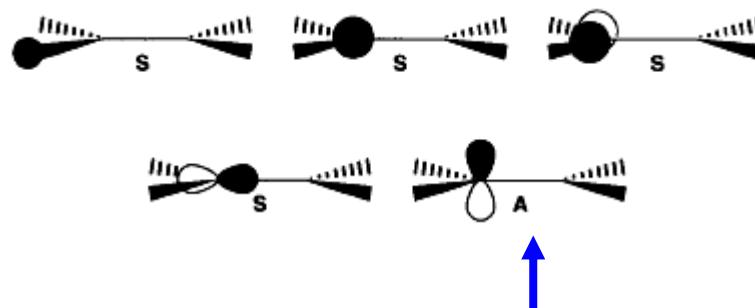
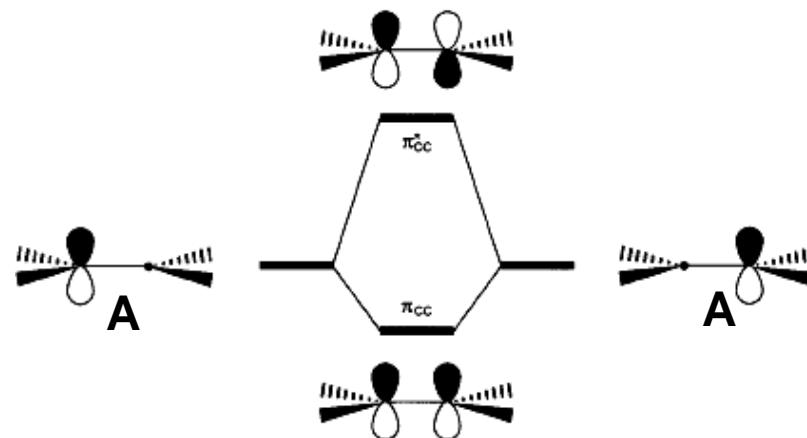
Hint: empty orbital interact with filled orbital

**Hint: electron flows out of bonding orbital => lengthen bonds
electron flows out of antibonding => shorten bonds**

➤ π systems and conjugation

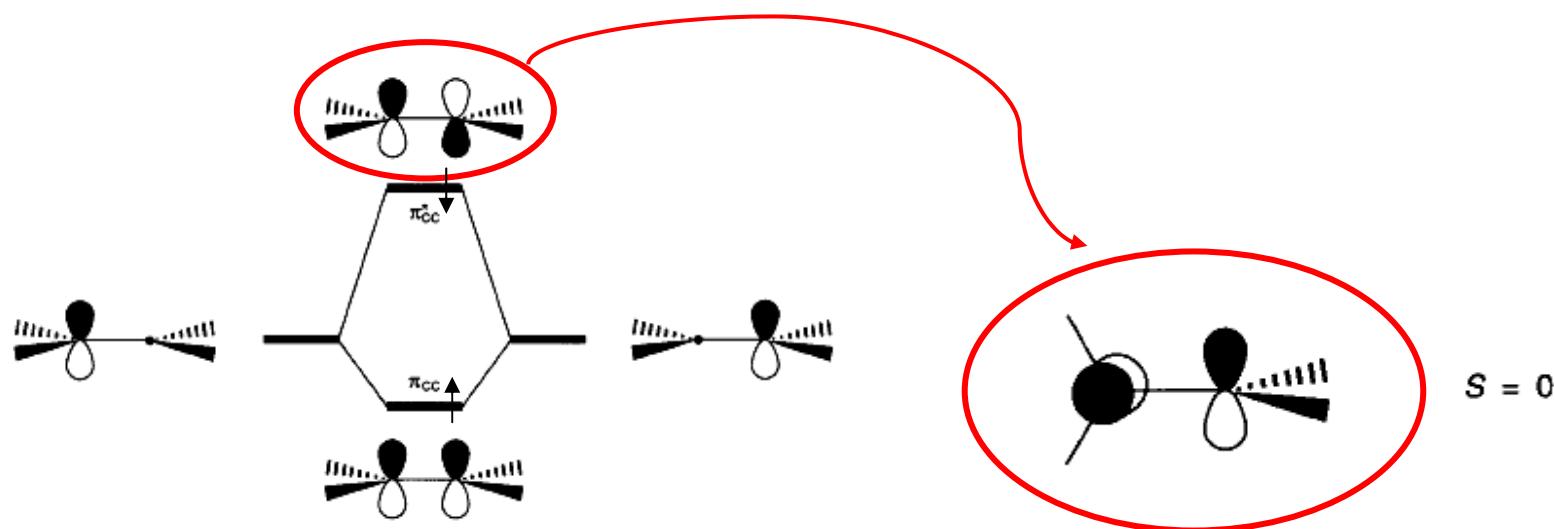
π Electrons are less tightly held than the σ electrons, often responsible for the electrical and optoelectrical properties of a material

Ex: $\text{CH}_2=\text{CH}_2$



Antisymmetrical with respect to molecular plane

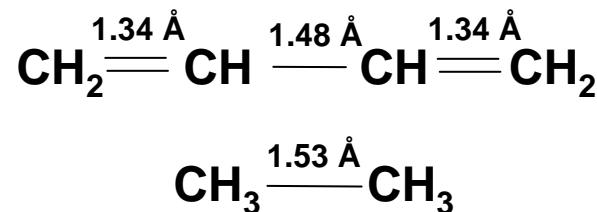
- In the excited state, the geometry may relax to different conformation



*No energy destabilization
caused by orbital interaction*

- Conjugation (C=C-C=C-.....)

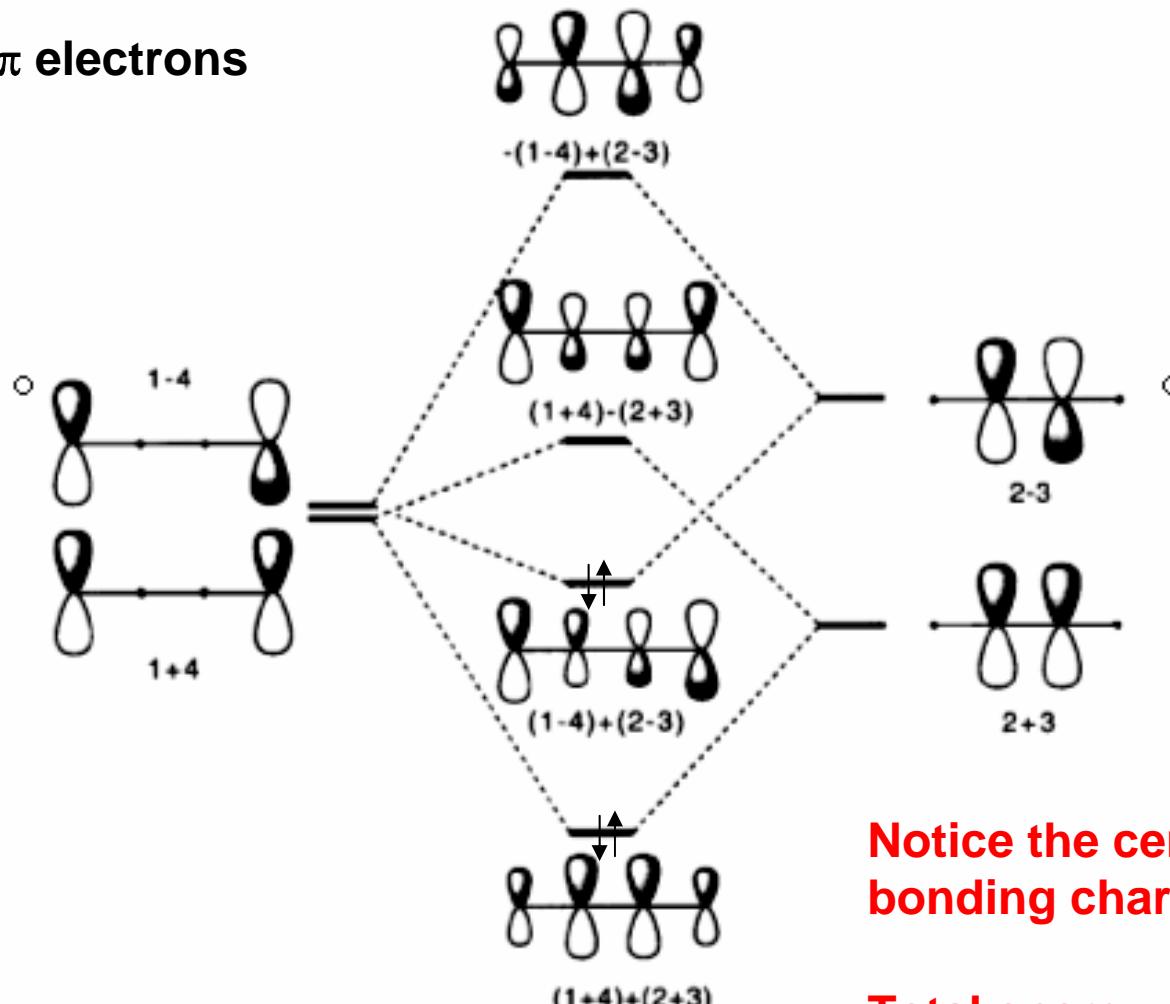
- $\text{CH}_3\text{-CH}_2\text{-CH=CH}_2 + \text{H}_2 \longrightarrow \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_3 \quad \Delta\text{H} = -30.2 \text{ kcal/mol}$
- $\text{CH}_2=\text{CH-CH}_2\text{-CH=CH}_2 + 2 \text{ H}_2 \longrightarrow \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_3 \quad \Delta\text{H} = -60.4 \text{ kcal/mol}$
(unconjugated diene)
- $\text{CH=CH-CH=CH}_2 + 2 \text{ H}_2 \longrightarrow \text{CH}_3\text{-CH}_2\text{-CH}_2\text{-CH}_3 \quad \Delta\text{H} = -56.5 \text{ kcal/mol}$
(conjugated diene)



Why conjugated diene more stable than unconjugated diene?

Why C-C bond shorter in conjugated diene?

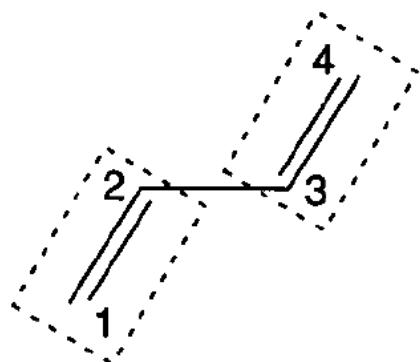
4π electrons



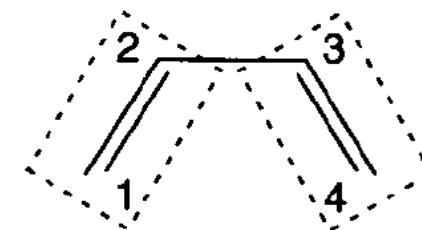
Notice the center bond has net bonding character

Total energy of butadiene is lower than 2 isolated system (ex: 2+3)

Butadiene in reality: not linear



Trans



Cis

***Trans* is more stable than *cis*.**

**Hint: Use orbital correlation diagram to rationalize it.
Or, think about steric effect**

➤ Lewis structure and bond localization

Molecular orbital (delocalized in nature) is useful, but sometimes it is easier to think in terms of localized orbitals!

Localized orbitals can represent electron density in a conceptually useful way and give concise picture of orbital interactions for the local structure of interest. However, keep in mind that localized orbitals are not eigenfunctions, not orthogonal to each other, and cannot be used in correlations with physical observables such as photoelectron spectra.

