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Band theory

Bloch Theorem

In the presence of a periodic potential (V(F +R) = V(?_"))

w(F + R) = exp(ik - Ry (F)



Proof: Bloch theoreminl D

- O O O O O O
if V(x+R)=V(x) R=na n=0+1+2. .

then w(x+ R)=exp(ikR)y(x)
Define 7, (translation operation)
ILIHx)y(x)]|=H(x+RWw(x+R)=H(x)y(x+R)=H(x)I,iw(x)
Hy, K =FE
- J' er ?’?W?’i‘
- Ty, =C(R)y,

R

[T, .H]=0
Ly (x)=w(x+R)=C(R)y(x)

Tr and H commute: they have common eigen states

ITTy(x)=y(x+2a)=T1T, w(x) = C(a)C(a)=C(2a)

C({T) — E?jka : Cr(Z{T) = C({T)C‘({?) _ Efﬂ'a C(R) _ gfh{



Proof: Bloch theorem in 3 D R =na, +n,a, +n,a,
Define T (translation operation) : Iz (r)=w(r +R)
LIH(FW(7)]= H(F + Ry + R) = HF)w (7 +R) = HF)Ty/(7)

Hy,=F
[T H]=0 == | 775

4

Ry, = C(R),
Ty (7) =y + R) = C(R)y(¥)
[lWE+ R ar=[ICR Pl P d’r=[|lyG) [ dr
CRI=1 = C(R)=¢&"®
I.T.w(#)=T.T.w(F) =w(F+R+R
Ty (r) =TTy (r) =Tz (7)

C(RC(R)=CR)C(R)=C(R+R') ™= C(R) = exp(ik -R)



Another form of the Bloch function

W, (1) = efE'fz.x(F ) where (7 +R)=u(7")

Proof: (7 +R)=explik - (7 + R)Ju(¥ + R)
— exp(z’fg ‘R) exp(z’E - )u(r)

:expuk'mﬁf) expk Dy (1)

What 1s the physical meaning of k ? /

" =cos(k -7)+isin(k - 7)




For a system with spherical symmetry v (#) =v(»)
H.I'|]=0 : [H.L]=0

-

Y, = LW
ngnfm =I(l+Dnry,, : ¥, (1.0.9)=R,(1)1,,(0.¢)
L LY =Y,
Meanmg of [/m === 1, (6,9)
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For a system with translational symmetry V(7 +R)=V(¥)
|H.T|=0
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General remarks about Bloch’s Theorem

(1) ¥, is not a momentum eigenstate, 7k is crystal momentum

_ h = h=_ - _
PV — Vyjﬂﬁ: __V[ o ?’f}?ﬁf(r)]

= hky,, +e"7 E?unk(F)
(2) k can always be couffned to the first B.Z.
let k'=k+G (exp(iG  R)=1)
-+ exp(ik - R) = exp[i(k + G)- R] = exp(ik - R)
~y - (F+R)=exp(ik "Ry .(F) = exp(ik - R)y .. (F)

= Y . -(r)=y () Block theorem holds for &, (r)
E_ _=FE _ and also holds for %, » (r)



(3) It can be reduced to a hermitian eigenvalue problem which 1s
restricted to a single primitive cell of the crystal
- )
Hy , =F v . where H = —Z—V* +U(7)
m

let v, (7)=exp(ik -7)u,, () i

o=, W = = s
VY (F) ===V - [Ve" 1, ()] | *
- EF T — h ikF a1 w2 — B
=——V|e" (iku, +Vu _)|=——=e""(ik+V)u,(r)
2m 2m

2

h — =
Hu,=FE u (r) where H, = —2L(.ik -I—V)2 +U(7)
m

with B.C.  u,(7F)=u,(7+R)

Partial differential equation with complicate boundary condition



We can reduce this complicate boundary value problem to a
simple matrix digonalization problem using variational principle.

-y

?';g I m——
Hu, =FE u (7)) where H, = —23—(15]6 +V) +U((7)
m
Choose a basis function ¥, (7°) where  y (7 + ﬁ) = . (7)

Hﬁr(’;) — ZCHZH(F)
Minimize (uk | H, \zg{) with constraint <”;{ |”;.;> =1

5.
- *

, O
<ZC?’!;L/H |Hk | ZCmZm>A’ <ZCHZ}T | ZCmZm> 0

i~y
@'C&r



. <ZCW:H >'C . > <Z( %, \Z( Zm>

m

-~

(E ZZC ( H;;;”(K) /"’ “ ZZ( (m nm 0

n in

Z Ha’m (k)(?m o ;""z Shrf (_;.FH' =

m m

=) | H( i )C = ASC =0 Matrix digonalization

problem

where e"'m (k) <ZE ‘HA | ZPH> ’ SE}” <I‘F ‘ Zm>
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Band structure:

k-dependence of eigenvalues (bands)

How many electrons can be occupied in a band ?

1-D Periodic b.c. W{:T + Na) = yf{:’f) where N oo

w(x+ Na) =™y (x) =y (x)

NKd = - — 1 1 2 - a . N
Nka 27Tm m = integer ceoe en 5
Z; z,
k=211 m/Na, b=2m /a

m

So the allowed Bloch wave vectoris fr=—p) N ]
N \ //
‘E_IIIIIIIII L1 Illlﬂ'

-b/2=-11 Ja<k<Tt /a=b/2

o j\.‘r a o

# of state in the 1BZ
z,+z,
= bands are filled

-

Each band can occupy 2N electrons per supercell (2 electrons per unit cell).



3-D

Periodic b.c.

wF+Na)=w(F) =123
where

w(F +Na)=e "y ()= u(F)

Nik-a =2nNx =2rm, m, = integer

where N, > ®
k=xp+x,b,+xD
JV}_,

N/

'y

N:

v

1 (27)’ _ (27)’

N,
3
So the allowed Bloch wave vectoris /= Z 7 :
i=1 jvf
AF = S (S x ) =y (B, )
N, N, N; N/N,N, i

# of state in the 1BZ =

N Q 4
vol. of 1B.Z. b -(b,xb,)

=N

sk

1 - -  _
?bl'(bzx‘ba)

Each band can occupy 2N electrons per supercell (2 electrons per unit cell).



Example: 3 D
Copper (Cu) : fcc structure

a = L(i+F) ‘1:47”;_(_;+;+E)
= S+ F) by = (- T+ F)

IBZ of fcc lattice

\/

i

=13



Fia. 5. Bymmelrical unit cell for the simple cubic lattice.

IBZ of bcce lattice
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Fia. 17. Bymmetrical unit eell for the hexagonal lattice.
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K-point sampling

[ Monkhorst and Pack (1976): ]

Idea: equally spaced mesh in Brillouin-zone.

Construction-rule:

K, s=u,by+ubr+ubs

2r—gp—1 )
Uy = :L;,_ ’:|125---a{.?r
b; reciprocal lattice-vectors
qy determines number of

k-points in r-direction



INTEGRATING OVER THE FIrRsT BRILLOUIN ZONE

e Observables are calculated as integrals

over all k-points within the first
Brillouin zone:

B

E‘l‘.Dt — ﬁ f]_stEZ E(k)a}k

n(r) = = [opy, nk(r)dk

VBZ

‘ e The integrals for metals are more

i
L

.

=

difficult to converge



Example:

e quadratic 2-dimensional lattice

® g = q» =4 = 16 Kk-points .
v * + .
e only 3 inequivalent k-points (= IBZ)
(5:5) = @1 =3 "
3 3 =L
(5.5)=> 0 =3 .
)= o=

ﬁﬂg F(k)dk = YF(k) + 1F (ko) + 1F (ks)

Irreducible BZ



Algorithm:
e calculate equally spaced-mesh
e shift the mesh if desired
e apply all symmetry operations of Bravaislattice to all k-points
e cxfract the irreducible k-points (= IBZ)

e calculate the proper weighting



Density of state

tE
N R N\ .
N l\ﬁ/ /]
A1/ N7+
100 < > -:::: ajuini——

- D(¢)

AN = D(&)Ae

number of state from &to € + Ag

D(g) : Density of states



W W, Wy

D(e.)A¢e

Number of state withinA&

24,

Z&AJ‘F
ka;_, =2

@, =

|
D(EI) — Ezka}kﬁ
where

1 occupied
fe = {

0 otherwise
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They have the same area.




Tetrahedrons method for Density of states

SH(}E—I—(?E):S—FAS

&, tAe=¢ + |0 k(k)

o) JL(A ) — dg
‘Va
d’k Q
D (e)de = d’ k—— dS (o k k )
Sf'firf (2}?') (jﬁ) E<Ey; :l;a As ( J ( )
E<E<ETAE Rv
Q  dS S, (£.k)
D(¢g)= — ) | D(e)=
( ) 4;?2-3 J.‘ kSﬁ'F‘: (2‘?1’)3 ; (k )‘

The irreducible Brillouin zone is divided into a large number of tetrahedrons. In
the small tetrahedrons, we assume that the energy varies linearly inside the cube.



Baky E,<E<E<E

Energy varies
E, linearly

—_—

() =E, (k) +V E (k) __ -(k—k)
E(k)=E(k,)+b-(k—k,)

b= [EG)-EG)] 7

where L kuxk', - k'xk',
}*l: . _.}*2 — - "F3:
Y V
= S ' 1 _ 2
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D.P?f(E) —

ds =+

200 dS(E)
Q7)) b

b
f,  E,<E<E,
fa_ﬁ E3£E£E4
fi  E,<E<E,
0 E<E,ork <E

\% (E-E,)’

where b = ‘ﬁ’kE(E) =

E, &,
5 ,

1?1 El@ Es
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4
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Work list

Perform self-consistent field (SCF)
bulk calculation for Si(Dia) first, and
make sure of the convergence
(neglect this step if done)

Setup band structure calculation for
Si(Dia)

Extract BS data using tool: bndacenm
Plot BS using xmgrace




Setup band structure calculation
for Si(Dia)

 Make a working subdirectory for bnd in directory si
%cd si
%mkdir bnd

o Copy the three input files: INCAR, POSCAR, and
POTCAR and the convergent CHGCAR into bnd
%cp INCAR POSCAR POTCAR CHGCAR bnd

 Goto bnd, revise INCAR, and setup KPOINTS
%cd bnd

e Run the VASP code
%vasp4620s&



| NCAR( SCF)
KPOI NTS( B

SYSTEM = S| Di amond
Si(FCC)
DOS rel at ed
| SMEAR = _5KPOINTS(SIZF)
RWI GS = 1.3 _ Line-mode
S Cartesi an
o 0.5 0.5
nkhorst—Wa%k 0.0
16 16 0. 0 0. O
INCAR(BS)O 0 0 0.0 0.0
0.0 0.0
SYSTEM = S| Di amond 0.5 0.0
0.5 0.0
DOS rel ated values 0. 75 0.0
| SMEAR = 0 0. 75 0.0
| CHARG = 11 0.0 0.0
RWI GS = 1. 3



High symmetry points in BZ

KPOI NTS:
Si (FCC)
11

Line- mode
Cartesi an
. 5 0.
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11
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0.0 0.5
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0.0 0. 5
0.0 0. 5
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Extract BS data using tool: bndacenm

El GENVAL:

2 2 1 1
0.20012 BBBOGDO0OEODDOEODBIDE-DBDPOOESDS
1.0000000000000000E-004
CAR
Si Di amond _ _
8 5|5 55 k-pognts, 8bands(eigenvalues)
0.5000000BO0E+00. 50@ G 000.010801086H Eted df the 1st k-point
1 - 3.8463
2 -1.2175
3 4.5852
‘5‘ tf;ne % %i@{nvalues of the 1st k-point
6 9.0933
7 9.0933
8 13.2997
0.4500000POP0E+00. 4 D® @ 500.01080108E1+ 0 :
1 3 08026 80[?\Ean]k—pomt
2 -1.0202
3 4.6023




How to use bndacenm

 Execute bndacenm and input Ef
%~/tool/bndacenm
Input Fermi level 5.77032221

e Output: bnd.kp and bnd.dat
 bnd.kp: distances of high sy

0.0000: L
0.2165: G
0.4665: X
0.5915: W
0.6799: K
0.9451: G

mN points

Notel!!

Ef should be
from SCF
calculation!!!
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2 Edit Data  Plot  View Window

||l

A, o= [0.459312, -7.23817)

v
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Homework
please Emaill to jeng@phys.sinica.edu.tw

e Calculate and plot LDA band structure along
high symmetry lines LGXWKG for Si(Dia)
and C(Dia) using exprimental lattice
constants

e Calculate and plot GGA band structure along
high symmetry lines LGXWKG, GHNGP,
GMKGA, for Cu(FCC), V(BCC), and Ti(HCP),
respectively, using experimental lattice
constants



