Spectroscopy at nanometer scale

1. Physics of the spectroscopies
2. Spectroscopies for the bulk materials
3. Experimental setups for the spectroscopies

4. Physics and Chemistry of nanomaterials



Various spectroscopic methods
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Born-Oppenheimer Approximation
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Electron Spectroscopy

1. Photons in, photons out — PL
2. Photons in, electrons out — UPS, XPS
3. Electrons in, electrons out — EELS
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absorption coefficient [10* cm™)
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Binding energy and effective radius for the exciton
E. = (m*/m,)(eley)? (13.6 eV)
A = (eleg)(mM*/m )2 (0.0529 nm)

For GaAs, g/eg,~ 13.2 and m*~ 0.067m,

then E, ~ 5 meV and a_; ~ 10 nm



X-RAY PHOTOELECTRON SPECTROMETER
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Figure 3.29. X-ray photoelectron spectrometer showing photons hv generated by an X-ray tube
incident on the spacimen where they produce photoelectrons e~ characteristic of the specimen
material, which then traverse a velocity analyzer, and are brought to focus at an electron detector
that measures their kinetic energy.
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Vibrational Spectroscopy

1. Photons in, photons out — IR, Raman
2. Electrons in, electrons out — EELS
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Absorbance
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Figure 8.5. FTIR spectra of boron nitride nanopowder surfaces after activation at 875 K (tracing
a), after subsequent deuteration (tracing b), and (c) difference spectrum of a subtracted from b
(tracing c). [From M.-I. Baraton and L. Merhari, P. Quintard, V. Lorezenvilli, Langrnuir, 9, 1486
{(1993).]
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Figure 8.19. Raman spectra of (a) crystalline graphites and (o) noncrystaliine, mainly qraph'rti:.
carbons. The O band appears near 1355cm™" and the G band, near 1580cm™'. [From
D. 5. Knight and W. B, White, J. Mater, Sci. 4, 385 {1989) ]



The Theory of Raman Spectroscopy
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Properties of individual nanoparticles
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Particle nature of photons

Einstein’s proposal:

Compton Scattering



Wave nature of electrons

de Broglie’s proposal: For dectrons:
= A (nm) = 1.22/EV2(eV)
Grids
Cu(110)
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Fundamentals of quantum mechanics

1. Quantizaton [~ ~---—-

2. Tunneling

3. Statistics




Critical Length scale
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C. Joachim et al., Nature 408, 541 (2000).
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One dimensional size effect
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Size effect
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Enhanced catalytic effect

Clusters Containing
10-50 Atoms

Reaclion Cell Containing CO, O,, Dy, N, , NO,



Au nanoparticle as an example

+«— 10nm ——»

E- = (h?/2m) (31°n)?3
9(Ep) = (3/2) (n/Ey)

6 = 2/[9(Ep)V] = (4/3) (E/N)

Number of valence electrons (N) contained
in the particles is roughly 40,000. Assume
the Fermi energy (E;) is about 7 eV for Au,

then
0~0.22meV ~25K
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Ultraviolet photoemission
spectra of ionized copper
clusters Cu,,— ranging in
size from Nof 1 to 410
show the energy
distribution versus binding
energy of photoemitted
electrons. These
photoemission patterns
show the evolution of the
3d band of Cu as a function
of cluster size. As the
cluster size increases, the
electron affinity approaches
the value of the bulk metal
work function. (Adapted
from ref. 10.) Figure 5



Electronic Structure of Single-wall Nanotubes
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Optical properties of nanoparticles
(in the infrared range)
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(1) Broad-band absorption:
Due mainly to the increased
normal modes at the surface.

(2) Blue shift:
Due mainly to the bond shortening
resulted from surface tension.



Optical properties of nanoparticles
(in the visible light range)

(1) Blue shift:
Due mainly to the energy-gap widening
because of the size effect.

(2) Red shift:
Bond shortening resulted from surface
tension causes more overlap between
neighboring electron wavefunctions.
Valence bands will be broadened and the
gap becomes narrower.
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(3) Enhanced exciton absorption:
Due mainly to the increased probability
of exciton formation because of the
confining effect.

Excitons



Optical properties

-3-.5t LI ) B T rF -
3.
gzﬁ
£
; z lF1—;-|||||||||l|rrrr|||-l||||;1|1'|'1—I"|—
20
.E -
ET_ﬁ = D&' .ﬂ--...,,ﬁ
3 . . 4
- s . % F3 i
g . @ I e
1 - z R B atat
- (] - L]
3 = : \Jf.
0.5 — ) by
- £
- E JD\ r-'v: J."
1 Q A N
a i 6 i I . L s s o | & 3 4 ] his :‘.
212 213 2.14 215 2,18 / H
PHOTON ENERGY {aV) g < CdSe
l|:|l..;:-1"'1“,|.ll'F'.|...|:.l.|...|...|.“|...I
1.8 2 22 24 28 28 3 32 34 38
EMNERGY (eV)

Figure 4.19. Ogptica! absomplion spactrum of hydrogen-ike ransitions of excilons in Gz,
[Adapded from P, W, Baumeister, Phys. Rav, 121, 350 (1961).]
Figure 4.20. Optical absorption spectrum of CdSe for two nanoparticles having sizes 20 A and
40 A, respectively. [Adapted from D. M. Mitlleman, Phys. Rev, B49, 14435 (1994).]



Semiconductor quantum dots
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(Reproduced from Quantum Dot Co.)



Camer

-=I'-'-=;:ntn:sa

Aportura

v lamp

Luadnpal®  Opiy
mass :

HMV dynoda

|

To dala processing

'E_’_n‘rlnv-#

(i ]

Lasen

Heamn axganider Beam spiitisr

— S —



Mass Analyzer

Magnatic Field

qV = Y2 mv?

F =qvB =mva/r
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Figure 3.8. Sketch of a mass spectrometer utiizing a 90° magnetic field mass analyzer,
showing details of the ion source: A—accelerator or exitractor plate, E—electron trap,
t—filameni, —onization chamber, L—focusing lenses, F—repeller, 5—slits. The magnatic
field of the mass analyzer is perpendicular to the plane of the page.
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Figure 4.5. A comparison of the energy levels of the hydrogen atom and those of the jellium
model of a cluster. The electronic magic numbers of the atoms are 2, 10, 18, and 36 for He, Ma,
Ar, and Kr, respectively (Ihe Kr energy levels are not shown on the figure) and 2, 18, and 40 for
the clusters. [Adapted from B. K. Rao et al., J. Cluster Sci. 10, 477 (1999).]
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FIRST IONIZATION POTENTIAL (eV) ™
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Shell structure: Two views. a: Atomic ionization
potentials drop abruptly from above 10 eV following
the shell closings for the noble gases (He, Ne, Ar
and so0 on), For semiconductors (labeled in blue) the
ionization potential is between 8 and 10 eV, while
for conductors (red) it is less than 8 eV, It is clear
that bulk properties follow from the natures of the
corresponding atoms. (Adapted from A. Holden,
The Nature of Sofids, © Columbia U, P., New Yark,
1965. Reprinted by permission.) be lonization
potentials for clusters of 3 to 100 potassium atoms
show behavior analogous to that seen for aloms.
The cluster ionization potential drops abruptly
following spherical shell closings at &' = 8, 20,

40 . ... Features at N =26 and 30 represent
spheroidal subshell closings. The work function for
bulk potassium metal is 2.4 eV, Figure 3
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Reactivity of nanoclusters
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Figure 4.13. Mass spectrum of Al nanoparticles before (top) and after (bottom) axposure to
oxygen gas. [Adapted from R. E. Leuchtner et al., J. Chem. Phys., 91, 2753 {1988).]



Magic clusters
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Mackay icosahedra

P=1
20 fce(111) faces
Shell model

N=1+3(10p2+2)



Nanopucks of same size and shapes




Atomically resolved Ag nanopucks
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dl / dV

d1/dV curves of Adsy nanopucks
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Energy levels of some magic clusters
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Binding energy per atom (eV)
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Stability of
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Size-, site- & shape-controlled

self-organized growth
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STSof Si(111)-(7x7)

Science 234, 304 (1986).
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STSof Si(111)-(7x7)

topograph

Faulted Unfaulted
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1. Science 234, 304-309 (1986).
2. Phys. Rev. Lett. 56, 1972-1975 (1986).



Density of states of various dimensions

3D N

D(e) = m" Inh2




Quantum size effect

A = de Broglie wavelength of electron
a = thickness of metal film
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Topograph
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Inelastic Tunneling
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Single Molecule Vibrational Spectroscopy and Microscopy

B.C. Stipe, M.A. Rezaei, and W. Ho,
Science 280, 1732-1735 (1998).




Atomic Scale Coupling of Photons to Single-Molecule Junctions
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S.W. Wu and N. Ogawa and W. Ho, Science 312, 1362-1365 (2006)



D.M. Eigler, IBM, Amaden



Artificial atom

.06

04 -02 0.0

Voitage (V)

0.2



