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Outline:

1 State-of-the-art device fabrication techniques
Future light sources: EUV and e-beam

2 e-beam lithography
3 Examples:

nano-pore based point contact devices
nano electronic devices



Lithography = Pattern transferring



Standard etching process
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Complementary process: |ift-off
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Substrate treatment process
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Experimental transistors for future process generations

65nm process
2005 production

45nm process
2007 production

CMOS 32nm process
0.8 nm conventional gate oxide 2009 production

22nm process
2011 production

Intel C. Michael Garner



Moore's Law:
a 30% decreasein the size of printed dimensionsevery two years
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Large circuit functions on a single semiconductor substrate =
Reduced cost !
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>220M Transistors Integrated into Devices Produced Today



SOURCES OF RADIATION
FOR MICROLITHOGRAPHY

Lithography

365nm Wavelength
1 '(A"_E)l(i;nps 248nm KrF (Krypton Fluoride)
193nm

ArF (Argon Fluoride)

Micron

0.1 130nm - Gap
90nm
Feature B5nm 13nm

Size EUV

0.01 10
1980 1990 2000 2010 2020

Minimum feature size is scaling faster than lithography wavelength
Advanced photo mask techniques help to bridge the gap Mark Bohr, Intel




The Ultimates of Optical Lithography

Resolution: R:k1 (A/NA) NA = sind = numerical aperture

K, = a constant for a specific lithography process
smaller K1 can be achieved by
improving the process or resist contrast

Depth of Focus DoF=k, (A/NA?)

Calculated R and DoF values
248 nm 193 nm 157 nm 13.4 nm

UV wavelength

Typical NA 0.75 0.75 .75/ 0.25
Production value of k; 0.5 0.5 % 0.5
Resolution 0.17pm | 013pm | 941y | 0.027 pm

DoF (assuming k, = 1) 0.44 pm 0.34 um 0.28 pm 0.21 pm

P.F. Carcia et al. DuPoint Photomasks, Vacuum and Thin Film (1999)



Optical Proximity Correction

used in 90 nm (193nm) production line
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Drawn structure Add OPC features Mask structure Printed on wafer

Mark Bohr, Intel



Two types of phase shift mask

Alternating aperture phase shift mask Embedded attenuating phase shift mask

o —————"Absorbing

Shifter phase-shifter
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1. Can even improve DoF

1. dark line appears at the center . ; .
2. Use MoSi,O/N,, SiN, or CrO,F, instead of Cr

2. Applicable only in limited structures

Ref: P.F. Carcia et al. DuPoint Photomasks, Vacuum and Thin Film






90 nm Generation Transistor
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-Sﬂaﬂo tev 90 nm transistor dimension is ~2000x
smaller than diameter of human hair

source: Intel develop forum
Spring, 2003




Nano materials will play an important role
in the silicon nanotechnology platform

Interconnectors with high electrical conductivity
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C. Michael Garner, Intel, Sept.16, 2003



Introduction of high-K gate dielectric

o
- .

- Tt R T EE LR
T s

SHiear) suosir e

90 nm process Experimental high-K
Capacitance 1X 1.6X
L eakage 1X <0.01X

Carolyn Block, Intel



A message from Intel

FASTER CHIPS
Compress P-doped regions Stretching the silicon lattice reduces the energy of
by filling SiGe into carved trenches, certain orbitals, allowing electrons to move more
hole conduction increased by 25% easily in that direction SILICON
Stretch N-doped regions DIRECTION  (ATOM
by annealing SixNy cover layer, OF LATTICE

electron conduction increased by10%

ORBITAL

ELECTRON 'STRETCHING l“\

Traditional MOS new PMOS new NMOS REQUCED-
ENERGY
ORBITALS

Graded SiGe layer Selective SiGe S-D  Tensile Si;N, Cap

Strained silicon benefits
eStrained silicon lattice increases /
electron and hole mobility CURRENT
*Greater mobility results in 10-20% FLOW
increase in transistor drive
current (higher performance)

*Both NMOS and PMOS transistors
improved Intel develop forum

http://www.newscienti st.com/news/news.jsp7 d=ns99994493



Introduction of new materials

1st Production | 1997 1999 2001 2003 2005 2007 2009 2011

Process 0.25p 10.18y [0.13p |90 Nm | 65nm 45nm | 32nm 22 nm

Generation m m m

Wafer Size (mm)| 200 200 200/ 300 300 300 300 300

300

Inter-connect Al Al Al Cu Cu Cu Cu ?

Channel Si Si Si Strained | Strained Strained | Strained Strained
Si Si Si Si Si

Gate dielectric | SiO, Sio, Sio, Sio, Sio, High-k | High-k | High-k

Gate electrode | PolySi | PolySi | PolySi | PolySi | PolySi | Metal Metal Metal

source: Intel develop forum




Three types of new Fully Depleted Transistors

SOl wafer

BOX

Handling Si wafer

Planar fully depleted SOI

Isolation :
Ts

Non-planar Double-gate (FinFET) Non-planar Tri-gate




Fully Depleted Transistors made on SOl wafers

T. Non-planar Double-gate (FInFET)

Non-planar Tri-gate

Side Gate

Source
I

Raised S-D using Selective Epi-Si Deposition
! Hsing Ve Epi-St Deposit Robert Chau, Intel



From Tri-gate transistors to Nano-wire transistors

depletion electric field

Tri-gate transistor Nano-wire transistor



Future light sour ces:;
Extreme UV

Electron beam



EUV exposure tool
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» Uses very short 13.4 nm light

* 13.4 nm radiation absorbed by all materials

* Requires reflective optics coated with quarter-wave Bragg reflectors
» Uses reflective reticles with patterned absorbers

* Vacuum operation

Intel Corporation & EUV LLC Charles (Chuck) W. Gwyn



EUV reflective mask

13 nm EUV light «‘
// reticles
/Cr absorber

Si0, buffer
Si capping

40 Mo/Si pairs

Mo (~2.8nm)
Si (~4.1nm)

Intel EUV mask



EUV mask and patterned resist

Circuit Pattarn

Mask Absorber
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90 nm Elbows in 350 nm polySi Source: Intel



Electron-Beam Lithography
Electron Beam (e-beam) Gun:
Electrons generated by:

» Thermionic emission from a hot filament.
* Field aided emission by applying alarge

electric field to afilament.

» Or a combination of the two.

Filament is negatively biased (cathode)

and electrons are accelerated to the substrate

at typically 25 - 100 keV.
eV =#r’k*/2m, = 1 ~0.25~0.12nm

E-beam is focused to a small spot size using:

* Electrostatic lenses

» Magnetic fields

» Apertures

A scanned e-beam spot “writes’ theimage in
theresist one “pixel” at atime.

X,Y direction of beam is controlled by
electrostatic plates.
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EXPOSURE CONTROL SYSTEM
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JEOL JBX-9300FS ELIONIX ELS-7000




ELECTRON OPTI YSTEM

TFE electron gun

——

Dj:

Acceleration tube
ION PUMP - o
| Alignment coil
/ Blanking electrode
_ — Blanking aperture
—1— /
— /
ION PUMP I
]
O— Electromagnetic lens
lignment coil
Objective aperture
ION PUMP = "

Objective lens

7



Electron Optics
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ZrO/W THERMAL FIELD EMISSION GUN

Polycrystalline tungsten
Heating filament

- ZrO Reservoir Filament

/ Emitter

i 100 W Crystal

Outgassing Ports

@ Suppressor Cap
~
Base
O
0 0
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Beam blanking
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[ |Blanking aperture

2" Electrostatic
Blanking




Electronmagnetic Alignment

1%t Alignment coil

2" Alignment coil
—————— -

C > Electronmagnetic lens




Electrostatic Deflector

1%t Electrostatic
Deflecto

2" Electrostatic
Deflector

Objective lens




Beam spot size vs. beam current for different apertures
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Modification of an SEM based e-beam writer

CAD

l'l <~ Electron source

Blanking circuit
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Comparison between 30keV and 100keV e-beam writer

Incident electrons

Distribution of
forward electrons

Distribution of

100keV

Good for prototype test

Thin resist line-width < 30nm
Clear align key image

Good for lift-off process
Lack of stage stability

Good for large area exposure
Thin resist line-width < 10nm
Require thick/clear align keys
Require extra resist engineering
Stable/accurate stage stability
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Principal of Electron Beam Exposure

Electron beam

<« Positive-tone e-beam resist
<——substrate

Backscattered electrons
secondary electrons

traces of electrons

After development

Proximity effect: main resolution limiting factor

primary electrons

-—

backscattered electrons
secondary electrons

stray exposure



Etching processes spin coating + curing

spin coating on film

electron beam exposure
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Resist profile made by high energy beam exposure
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Controlling undercut in bottom layer resist
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guasi-3D polymer photonic crystal
Transmission spectra, different lattice constants
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3D polymer structures
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Examples of 100keV e-beam lithography 8 nm negative-tone
Inorganic resist

."Eh-

3nm NiCr wire

13nm Au wire

470087

. M. S. M. Saifullah et al., Jpn. J. Appl. Phys. 38 (1999) 7052.
D.R.S. Cumming et a, M. Kampetal. K. Yamazaki et al., Proc. SPIE. 3997 (2000) 458.

Microelectronic Engineering 30 (1996), 423 ’j Vﬂg- Sc_:lélecgnfcle, 17,86, (1999) |\ tine: 100-keV e-beam writer
Machine : Modified JEOL 100CXII achine - =io NTT Basic Research Laboratories
Kelvin Nanotechnology Ltd



Sub-10 nm Electron Beam Nanolithography
Using Spin Coatable TiO, Resists

University of Cambridge and Leica Microsystems Lithography Limited
Leica VB6-UHR-EWF 100keV

M. S. M. Saifullah,et al., Nano Letters, 3, 1587 (2003)




eLIOnIX



o |ssuesrelated to theintegrated circuit industry:

» Slow throughput
e A 0.1 um diameter beam is < 10-12the area of a6” wafer.

Projection EBL Systems (SCALPEL):
scattering with angular limitation in projection electron beam lithography

beam of electrons

AAARXXXER
oo qggtr?ggne screening mask

= back focal planefilter
reduced image on Lens 2



Multibeam direct-write electron beam lithography system

Single source with correction lens array
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Take home message:

Extreme ultraviolet | areconsidered leading contendersfor
electron beam projection [ next generation lithography

However, electron beam direct write system isa maskless lithography.
e eliminating mask amortization costs and
e speed up chip development cycles.

The ultimate resolution of electron beam lithography remainsto be explored

Main applications:

e manufacture of small volume specialty products
e direct writefor advanced prototyping of integrated circuits

e studies of quantum effects and other novel physics phenomena
at very small dimensions



