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Textbooks

e Main text: Fundamentals of Solid State
Physics by J. Richard Christman (John
Wiley & Sons, NY, 1988).

e Main reference: Introduction to Solid State
Physics 8th ed. by Charles Kittel (Wiley,
NY, 2004)



Grading

e Presence: 10%
e Homework: 30%

 Three exams: 20% each
— The range of the three exams will not overlap



Part 1 (Lectures by K.K.Liang)

Introduction

Crystal lattices

Crystal structures and reciprocal lattices
X ray diffraction

Crystal binding

Elastic properties




Solid State Physics

e Understanding the properties of solid
materials in terms of their constituent
particles: electrons and nuclel

e Developing tallored-made materials and
devices for particular applications



Solid State Theory

« Atoms - molecules - solids
— Maxwell's equation for EM fields
— Schrodinger equation for particles

o Schrodinger equation = particle
wavefunctions (eigenvector) + other

dynamical quantities (such as energy, the
eigenvalue) = various material properties

o External forces (perturbations) may be
added into the SE to study the responses



Solid State Theory Takes Care of:

e The structure of solids

— Atomic equilibrium positions = fixed structure of a
solid

— Distinction from liquids and gases

— Classes of solids:
» Crystalline
 Amorphous
« Polycrystalline

— High symmetry makes crystals simpler to handle
theoretically, as the SE need be solved only for points
within a single pattern rather than throughout the
crystal.



Solid State Theory Takes Care of:

e Electrons

— The electrons are usually separated into core
electrons and outer electrons

— QOuter electrons contribute the most to material
properties:
* Produce forces of attractions that hold atoms of the solid
together
 In conjunction with ion cores, they produce restoring forces
that are responsible for the vibratory motion of the atoms
— Core electrons are responsible for short-range forces
of repulsion between atoms and so prevent the
collapse of solids.

— Transition elements with d and f subshells partially
filled have to be considered on a case-by-case basis.



Solid State Theory Takes Care of:

e Atomic vibrations
— Collective oscillations = normal modes

— Fixed allowed frequencies, determined by the
equilibrium structure and strength of interactions
between atoms (thus differ from solid to solid)

— Quantized normal mode energies = phonons
— Number of phonons does not conserve

e Defects — anomalies in the atomic structure

— Any deviations from regularity in pattern of atomic
positions, or impurity, in a crystal

— Impurity in amorphous materials
— Defects influence nearly all properties of materials



Properties of Solids

e Mechanical

— Mass density

— Cohesive energy

— Elastic properties (bulk modulus)
 Thermal

— Heat capacity (C,, C))

— Thermal conductivity

— Contributions from phonons and electrons
e Electrical

— (electrical) conductivity
— Dielectric constant



Properties of Solids

 Magnetic

— Magnetic susceptibility (para, dia, ferro)
e Optical

— Reflectance

— Index of refraction
— absorption



Solid State Experiments

Scattering
— Xray

— Electrons
— Neutrons

Hall effect
Optical

— Absorption
— Reflection

Magnetic resonance
De Haas — van Alphen effect



Crystal Lattice

ldealized description of the geometry of
crystals

Mathematical technigues for precise
definition of the meaning of crystalline
periodicity

The description and use of crystalline
symmetry

Notation for specifying directions and
planes in crystals



Crystalline Periodicity

In a crystalline material, the equilibrium positions
of all the atoms form crystal

Crystal = lattice + basis

Lattice = 3D periodic array of points, unbounded
In all directions




Bravais Lattice

o Definition 1: Periodic structure form by infinite
number of points in the space. The distribution of
other points in space, observed from any of the
points, Is exactly the same.

o Definition 2: In a 3-D lattice, the position vector
of one of the points can be written as the linear
combination of three fundamental vectors with
Integral coefficients.



Lattice and Fundamental Vectors

e The fundamental vectors are chosen non-
uniquely to describe the lattice

 The fundamental vectors form the unit cell (*)

* If both the volume of the unit cell and the basis
are chosen to be the smallest, they are primitive




Unit Cells

Unit cell: A volume which, through translation by
all of the lattice vectors, can fill the space without
overlapping between the replica.

Primitive unit cell: unit cell with the smallest
volume

Unit cell can form from fundamental vectors, but
It can also be constructed by other methods (e. g.
Wigner-Seitz primitive cell).

As long as the fundamental vectors are fixed, all
the unit cells have the same volume (why?)



Crystal Symmetry Operations

o Symmetry operations: Operations under which
there is no change Iin the spatial distances and
angles, and there is no distortion, compression
or extension, and yet after application of the
operation, there is still a lattice point where there
were a lattice point and there is not a lattice
point where there were no lattice point.

— Translation
— Rotation

— Reflection
— Inversion



Crystal Symmetry

« Any symmetry operation of a Bravais
lattice = a translation + point group
operators

* A collection of these operations forms a
symmetry group of the Bravais lattice.



Frequently used symmetry op notations
(Schonflies notations)

 E : ldentity
* | Inversion
e C_:n-fold axis (rotation over 2rt / n)

* o (o, and o,): reflection (horizontal or
vertical w.r.t. C_ axis)
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Classification of the Crystal Systems

e Point group (only rotation or reflection) = 7 crystal
systems
— Cubic(a=b=c,a=p=y=90°
— Tetragonal (a=b=#c,a =0 =y =90°)
— Orthorhombic (a=b #c, a =0 =7y =90°)
— Monoclinic (azb#c,a=p=90°#v)
— Triclinic (@#b#c, a=p#y=90°)
— Trigonal (@a=b=c,a=p=7y<120° = 90°)
— Hexagonal (a=b=#c, a =0 =90° vy =120°)



Bravais Lattices

e Space group (point group + translation)

— Considering the addition of lattice points by certain
centering conditions

— Check if it is still a lattice
— Check if it Is a new lattice

* 14 Bravais lattices:
— P (primitive) (6) : 7 lattice systems, but primitive
trigonal = primitive hexagonal
— | (3) : Body-centered, cubic, tetragonal, orthornombic
— F (2) : Face-centered, cubic, orthorhombic

— A, B, or C (2) : One-side-centered, monoclinic-B,
orthorhombic-C

— R (1) : Special-centering, trigonal-R



Alternative grouping

Cubic (3) : simple cubic, body-centered
cubic, face-centered cubic

Tetragonal (2) : simple, body-centered

Orthorhombic (4) : simple, base-centered,
face-centered, body-centered

Monoclinic (2) : simple, base-centered

One for triclinic, trigonal and hexagonal
each. (simple)
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Crystal

e Lattice + Basis =
— 32 point groups
— 230 space groups



Lattice Planes

 Lattice plane: a plane passing three non-co-
linear points

« Description of lattice plane

— Choose the lattice origin (not on the plane considered)
and lattice vectors a,, a, and a5 (primitive if possible,
otherwise conventional)

— The plane intersects the crystal axes at 3 points: x,a,,
X,a,, X383. X1, Xy, @and X5 are integers if the lattice
vectors are primitive.

— Take the inverse of X, X, and x5 (H=1/x,, K=1/x,,
L=1/x5) and multiply by the LCM of x,, X, and X; = ( h,
K, )

— (h, k, I') =Miller indices of the plane



Properties of Miller Indices

( h, k, 1) may denote not only one but a set of
parallel planes

{h, k, |}=the set of planes equivalent to ( h, k,
| ). For example, {100 }in cubic system=(10
0)+(010)+(001)+(-100)+(0-10) +
(00-1)

(200)=(100)7?

[ h k] denotes a direction ( ha,; + ka, +1a3). In
cubicsystem[hkl]L(hkl)



Inter-Planar Distance

* The distance d between adjacent planes with the
same Miller indices (h k |) is given by

where t is the volume of the primitive unit cell and

g=hbxc+kcxa+laxb



Some more terms

o Coordination number: number of nearest
neighboring lattice points
—SC:.6
— bcc : 8
— fcc: 12

e Conventional unit cell
— Cubic systems : sc, bcc, fcc

— The length of the sides of the underlying sc is chosen
as the lattice constant.

— The fundamental vectors of the underlying sc are
chosen as the fundamental vectors



Examples of Crystal Structures

» Body-centered cubic (bcc)

— Conventional lattice fundamental vectors:
a,=-a(1,0,0),a,=a(0,1,0);a3=a(0,0,1)

2 atoms per unit cell (basesat(0,0,0)anda (1,1,
1)/2)

— Bravais lattice vectors (primitive, coord# = 8):
a,=a(-1,1,0)/2;a,=a(1,-1,1)/2;a;=a(1,1,
-1)/2

— The usually seen bcc crystals are all metals:

 Ba, Cr, Cs, Fe, K, Li, Mo, ...



Examples of Crystal Structures

» Face-centered cubic (fcc)

— Conventional lattice fundamental vectors:

4 atoms per unit cell (basesat(0,0,0),a(0,1,1)/
2,a(l1,0,1)/2anda(1,1,0)/2)

— Bravais lattice vectors (primitive, coord# = 12):
a,=a(0,1,1)/2;a,=a(1,0,1)/2,a;=a(1,1,
0)/2

— All kinds of materials including noble gases may form
fcc crystal because the larger the coord# the more

stable the structure:

* Ca, Ce, Ag, Al, Au, Cu, Ni, Pb, Pt, and Ar, Ne, Xe, Kr at low
temperature, ...



Examples of Crystal Structures

« Diamond structure (not a Barvais lattice)
— fcc lattice with a 2-point basis at (0,0,0) and a ( 1, 1,
1)/4
— Primitive: 2 atoms / unit cell
— Conventional: 8 atoms / unit cell
— Coordination # = 4
— Next-nearest neighbors (nnn) = 12

— Few neighbors, but since it is suitable for covalent
bonding, it is stiff. Usually semiconductors (valence 4
materials):

e C (diamond), Si, Ge, a-Sn, ...



Diamond structure




2-D Closest-Packed Structures




FCC Closest-Packed Structure

e Plane stacking order: BC BC stacking




FCC Closest-Packed Structure

* Plane stacking order: AZAE stacking




Points of Symmetry in BZ (SC)

Most commonly used:

» M: center of an edge
* R: corner point

« X: center of a face




Points of Symmetry in BZ (FCC)

2 Most commonly used:

« K: middle of an edge joining
two hexagonal faces

L: center of a hexagonal face
U: middle of an edge joining a
hexagonal and a square face
W: corner point

X: center of a square face

FCC



Points of Symmetry in BZ (BCC)

Most commonly used:

* H: corner point joining four
edges

* N: center of a face

« P: corner point joining three
edges

BCC



Points of Symmetry in BZ (HCP)

Most commonly used:

A: center of a hexagonal face
H: corner point

K: middle of an edge joining
two rectangular faces

L: middle of an edge joining a
hexagonal and a rectangular
face

M: center of a rectangular face




Bragg’s formulation

Assumptions:

o Static ions (atoms)

» Elastic scattering (1=A1)

o Specular reflection from a crystal plane (6= 6’)



L aue’s formulation

Assumptions:
e Static ions (atoms)
« Elastic scattering

e Each ion reflects the incident wave into all
directions



Ewald Construction

—

e Draw the incident wave vector Kk, it starts from
a reciprocal lattice point O.

* Draw a sphere with radius
the other end of k.

 |If there is a reciprocal lattice point on the
sphere, then the vector connecting this point to
the center of the sphere Is the allowed
diffraction wave vector K

k and centered at




Ewald Construction (Fig.)




Experiment: Laue Method

» Single crystal

* Fixed direction of k but
with continuous values of
K (from k, to k;)

» Used for determination of
the orientation of a single
crystal with known
structure




Experiment. Rotating-Crystal
Method

 Monochromic wave (fixed
maghnitude of k) s R g

* A single crystal rotating
about a fixed axis

» Used for crystal structure ,
determination .'




Experiment. Powder (Debye-
Scherrer) Method

* Fixed magnitude of k

 Powdered sample (or a
polycrystalline sample) =
continuous crystal
orientation; otherwise the
same as the rotating-
crystal method

o With different diffraction
rings, DSM measures all
the size of K which are
shorter than 2k




