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Textbooks

• Main text: Fundamentals of Solid State 
Physics by J. Richard Christman (John 
Wiley & Sons, NY, 1988).

• Main reference: Introduction to Solid State 
Physics 8th ed. by Charles Kittel (Wiley, 
NY, 2004)



Grading

• Presence: 10%
• Homework: 30%
• Three exams: 20% each

– The range of the three exams will not overlap



Part 1 (Lectures by K.K.Liang)

• Introduction
• Crystal lattices
• Crystal structures and reciprocal lattices
• X ray diffraction
• Crystal binding
• Elastic properties



Solid State Physics

• Understanding the properties of solid 
materials in terms of their constituent 
particles: electrons and nuclei

• Developing tailored-made materials and 
devices for particular applications



Solid State Theory

• Atoms → molecules → solids
– Maxwell’s equation for EM fields
– Schrödinger equation for particles

• Schrödinger equation ⇒ particle 
wavefunctions (eigenvector) + other 
dynamical quantities (such as energy, the 
eigenvalue) ⇒ various material properties

• External forces (perturbations) may be 
added into the SE to study the responses



Solid State Theory Takes Care of:

• The structure of solids
– Atomic equilibrium positions ⇒ fixed structure of a 

solid
– Distinction from liquids and gases
– Classes of solids:

• Crystalline
• Amorphous
• Polycrystalline

– High symmetry makes crystals simpler to handle 
theoretically, as the SE need be solved only for points 
within a single pattern rather than throughout the 
crystal.



Solid State Theory Takes Care of:

• Electrons
– The electrons are usually separated into core 

electrons and outer electrons
– Outer electrons contribute the most to material 

properties:
• Produce forces of attractions that hold atoms of the solid 

together
• In conjunction with ion cores, they produce restoring forces 

that are responsible for the vibratory motion of the atoms
– Core electrons are responsible for short-range forces 

of repulsion between atoms and so prevent the 
collapse of solids.

– Transition elements with d and f subshells partially 
filled have to be considered on a case-by-case basis.



Solid State Theory Takes Care of:

• Atomic vibrations
– Collective oscillations ⇒ normal modes
– Fixed allowed frequencies, determined by the 

equilibrium structure and strength of interactions 
between atoms (thus differ from solid to solid)

– Quantized normal mode energies ⇒ phonons
– Number of phonons does not conserve

• Defects — anomalies in the atomic structure
– Any deviations from regularity in pattern of atomic 

positions, or impurity, in a crystal
– Impurity in amorphous materials
– Defects influence nearly all properties of materials



Properties of Solids
• Mechanical

– Mass density
– Cohesive energy
– Elastic properties (bulk modulus)

• Thermal
– Heat capacity (Cv, Cp)
– Thermal conductivity
– Contributions from phonons and electrons

• Electrical
– (electrical) conductivity
– Dielectric constant



Properties of Solids

• Magnetic
– Magnetic susceptibility (para, dia, ferro)

• Optical
– Reflectance
– Index of refraction
– absorption



Solid State Experiments
• Scattering

– X ray
– Electrons
– Neutrons

• Hall effect
• Optical

– Absorption
– Reflection

• Magnetic resonance
• De Haas – van Alphen effect



Crystal Lattice

• Idealized description of the geometry of 
crystals

• Mathematical techniques for precise 
definition of the meaning of crystalline 
periodicity

• The description and use of crystalline 
symmetry

• Notation for specifying directions and 
planes in crystals



Crystalline Periodicity

• In a crystalline material, the equilibrium positions 
of all the atoms form crystal

• Crystal = lattice + basis
• Lattice = 3D periodic array of points, unbounded 

in all directions



Bravais Lattice

• Definition 1: Periodic structure form by infinite 
number of points in the space. The distribution of 
other points in space, observed from any of the 
points, is exactly the same.

• Definition 2: In a 3-D lattice, the position vector 
of one of the points can be written as the linear 
combination of three fundamental vectors with 
integral coefficients.



Lattice and Fundamental Vectors

• The fundamental vectors are chosen non-
uniquely to describe the lattice

• The fundamental vectors form the unit cell (*)
• If both the volume of the unit cell and the basis 

are chosen to be the smallest, they are primitive



Unit Cells
• Unit cell: A volume which, through translation by 

all of the lattice vectors, can fill the space without 
overlapping between the replica.

• Primitive unit cell: unit cell with the smallest 
volume

• Unit cell can form from fundamental vectors, but 
it can also be constructed by other methods (e. g.
Wigner-Seitz primitive cell).

• As long as the fundamental vectors are fixed, all 
the unit cells have the same volume (why?)



Crystal Symmetry Operations
• Symmetry operations: Operations under which 

there is no change in the spatial distances and 
angles, and there is no distortion, compression 
or extension, and yet after application of the 
operation, there is still a lattice point where there 
were a lattice point and there is not a lattice 
point where there were no lattice point.
– Translation
– Rotation
– Reflection
– Inversion



Crystal Symmetry

• Any symmetry operation of a Bravais
lattice = a translation + point group 
operators

• A collection of these operations forms a 
symmetry group of the Bravais lattice.



Frequently used symmetry op notations
(Schönflies notations)

• E : Identity
• i : Inversion
• Cn : n-fold axis (rotation over 2π / n)
• σ (σh and σv): reflection (horizontal or 

vertical w.r.t. Cn axis)
• Dn, Dnh, Dnd : Cn × C2’, Cnh × C2’, Sn × C2’

(C2’ axis is perpendicular to the Cn axis)
• Sn = σhCn





Classification of the Crystal Systems

• Point group (only rotation or reflection) ⇒ 7 crystal 
systems
– Cubic (a = b = c, α = β = γ = 90°)
– Tetragonal (a = b ≠ c, α = β = γ = 90°)
– Orthorhombic (a ≠ b ≠ c, α = β = γ = 90°)
– Monoclinic (a ≠ b ≠ c, α = β = 90° ≠ γ)
– Triclinic (a ≠ b ≠ c, α ≠ β ≠ γ = 90°)
– Trigonal (a = b = c, α = β = γ < 120° ≠ 90°)
– Hexagonal (a = b ≠ c, α = β = 90°, γ = 120°)

a
b

c



Bravais Lattices
• Space group (point group + translation)

– Considering the addition of lattice points by certain 
centering conditions

– Check if it is still a lattice
– Check if it is a new lattice

• 14 Bravais lattices:
– P (primitive) (6) : 7 lattice systems, but primitive 

trigonal = primitive hexagonal
– I (3) : Body-centered, cubic, tetragonal, orthorhombic
– F (2) : Face-centered, cubic, orthorhombic
– A, B, or C (2) : One-side-centered, monoclinic-B, 

orthorhombic-C
– R (1) : Special-centering, trigonal-R



Alternative grouping

• Cubic (3) : simple cubic, body-centered 
cubic, face-centered cubic

• Tetragonal (2) : simple, body-centered
• Orthorhombic (4) : simple, base-centered, 

face-centered, body-centered
• Monoclinic (2) : simple, base-centered
• One for triclinic, trigonal and hexagonal 

each. (simple)



14 Bravais
Cells



Crystal

• Lattice + Basis ⇒
– 32 point groups
– 230 space groups



Lattice Planes
• Lattice plane: a plane passing three non-co-

linear points
• Description of lattice plane

– Choose the lattice origin (not on the plane considered) 
and lattice vectors a1, a2 and a3 (primitive if possible, 
otherwise conventional)

– The plane intersects the crystal axes at 3 points: x1a1, 
x2a2, x3a3. x1, x2, and x3 are integers if the lattice 
vectors are primitive.

– Take the inverse of x1, x2 and x3 (H=1/x1, K=1/x2, 
L=1/x3) and multiply by the LCM of x1, x2 and x3 ⇒ ( h, 
k, l )

– ( h, k, l ) = Miller indices of the plane



Properties of Miller Indices
• ( h, k, l ) may denote not only one but a set of 

parallel planes
• { h, k, l } = the set of planes equivalent to ( h, k, 

l ). For example, { 1 0 0 } in cubic system = ( 1 0 
0 ) + ( 0 1 0 ) + ( 0 0 1 ) + ( -1 0 0 ) + ( 0 -1 0 ) + 
( 0 0 -1 )

• ( 2 0 0 ) = ( 1 0 0 ) ?
• [ h k l ] denotes a direction ( ha1 + ka2 + la3 ). In 

cubic system [ h k l ] ⊥ ( h k l )



Inter-Planar Distance

• The distance d between adjacent planes with the 
same Miller indices ( h k l ) is given by

where t is the volume of the primitive unit cell and 

g
τ

=d

baaccbg ×+×+×= lkh



Some more terms

• Coordination number: number of nearest 
neighboring lattice points
– sc : 6
– bcc : 8
– fcc : 12

• Conventional unit cell
– Cubic systems : sc, bcc, fcc
– The length of the sides of the underlying sc is chosen 

as the lattice constant.
– The fundamental vectors of the underlying sc are 

chosen as the fundamental vectors



Examples of Crystal Structures

• Body-centered cubic (bcc)
– Conventional lattice fundamental vectors:

a1 = a ( 1, 0, 0 ); a2 = a ( 0, 1, 0 ); a3 = a ( 0, 0, 1 )
2 atoms per unit cell (bases at ( 0, 0, 0 ) and a ( 1, 1, 
1 ) / 2)

– Bravais lattice vectors (primitive, coord# = 8):
a1 = a ( -1, 1, 0 ) / 2; a2 = a ( 1, -1, 1 ) / 2; a3 = a ( 1, 1, 
-1 ) / 2

– The usually seen bcc crystals are all metals:
• Ba, Cr, Cs, Fe, K, Li, Mo, …



Examples of Crystal Structures

• Face-centered cubic (fcc)
– Conventional lattice fundamental vectors:

4 atoms per unit cell (bases at ( 0, 0, 0 ), a ( 0, 1, 1 ) / 
2, a ( 1, 0, 1 ) / 2 and a ( 1, 1, 0 ) / 2)

– Bravais lattice vectors (primitive, coord# = 12):
a1 = a ( 0, 1, 1 ) / 2; a2 = a ( 1, 0, 1 ) / 2; a3 = a ( 1, 1, 
0 ) / 2

– All kinds of materials including noble gases may form 
fcc crystal because the larger the coord# the more 
stable the structure:

• Ca, Ce, Ag, Al, Au, Cu, Ni, Pb, Pt, and Ar, Ne, Xe, Kr at low 
temperature, …



Examples of Crystal Structures

• Diamond structure (not a Barvais lattice)
– fcc lattice with a 2-point basis at ( 0, 0, 0 ) and a ( 1, 1, 

1 ) / 4
– Primitive: 2 atoms / unit cell
– Conventional: 8 atoms / unit cell
– Coordination # = 4
– Next-nearest neighbors (nnn) = 12
– Few neighbors, but since it is suitable for covalent 

bonding, it is stiff. Usually semiconductors (valence 4 
materials):

• C (diamond), Si, Ge, α-Sn, …



Diamond structure



2-D Closest-Packed Structures



FCC Closest-Packed Structure
• Plane stacking order: ABCABC stacking



FCC Closest-Packed Structure
• Plane stacking order: ABAB stacking

a

c
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8

=
a
c

Ideally



Points of Symmetry in BZ (SC)
Most commonly used:
• M: center of an edge
• R: corner point
• X: center of a face

SC



Points of Symmetry in BZ (FCC)

FCC

Most commonly used:
• K: middle of an edge joining 

two hexagonal faces
• L: center of a hexagonal face
• U: middle of an edge joining a 

hexagonal and a square face
• W: corner point
• X: center of a square face



Points of Symmetry in BZ (BCC)

BCC

Most commonly used:
• H: corner point joining four 

edges
• N: center of a face
• P: corner point joining three 

edges



Points of Symmetry in BZ (HCP)
• Most commonly used:
• A: center of a hexagonal face
• H: corner point
• K: middle of an edge joining 

two rectangular faces
• L: middle of an edge joining a 

hexagonal and a rectangular 
face

• M: center of a rectangular face

HEX



Bragg’s formulation

Assumptions:
• Static ions (atoms)
• Elastic scattering (λ = λ’)
• Specular reflection from a crystal plane (θ = θ ’)
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Laue’s formulation 

Assumptions:
• Static ions (atoms)
• Elastic scattering
• Each ion reflects the incident wave into all 

directions
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Ewald Construction

• Draw the incident wave vector    , it starts from 
a reciprocal lattice point O.

• Draw a sphere with radius      and centered at 
the other end of    .

• If there is a reciprocal lattice point on the 
sphere, then the vector connecting this point to 
the center of the sphere is the allowed 
diffraction wave vector    .
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Ewald Construction (Fig.)



Experiment: Laue Method
• Single crystal
• Fixed direction of k but 

with continuous values of 
k (from k0 to k1)

• Used for determination of 
the orientation of a single 
crystal with known 
structure



Experiment: Rotating-Crystal 
Method

• Monochromic wave (fixed 
magnitude of k)

• A single crystal rotating 
about a fixed axis

• Used for crystal structure 
determination



Experiment: Powder (Debye-
Scherrer) Method

• Fixed magnitude of k
• Powdered sample (or a 

polycrystalline sample) ⇒
continuous crystal 
orientation; otherwise the 
same as the rotating-
crystal method

• With different diffraction 
rings, DSM measures all 
the size of K which are 
shorter than 2k


