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| attice Vibrations

1. Harmonic Approximation
2. Vibration of crystal with monatomic basis
3. Two atoms per primitive cell

4. Phonons in Superlattices

HW assignment: Ch. 6, Problems 5, 6, and 8.



1. Harmonic approximation

The lattice of points, specified by vectors R.

A particular instantaneous configuration of ions. The ion whose
mean position is R is found at r(R)

If u(R)=r(R)-R is small, we can approximate the potential

U(r-R) by » K (r-R)?=1» K u? ...... harmonic approximation
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Simple Harmonic Motion

U(r-R) = K (r-R)?
U
F=-gU/ ar=-Ku
\

Force constant
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F=ma=mu=-Ku R

u(t)=Acos(w t); @?=K/m



Three coupled oscillators

d.'.!
m d:;' = KU — u), (6-1)
du.
m E‘? = —K{(u; — u)) — Kfu; — uy), (6-2)
2 ' (6-3)
Th _ Ky — 1),



Solving coupled equations

Replace U by - @?2u
everywhere
Ky — mo®u, — Ky =

_K|u| + (Kl + K: — m{ﬂz)ﬂ'z — Kzﬂ:] =

_Kguz + (K; — m'll.}z)u;

Rearrange into an eigen-value equation

K1 'K1
'Kl K1+K2
0 K,

0
K,
Kz

Mo1{

(6-4)
(6-5)

(6-6)



Solution

Eigen-values:

w =0, (Pure translational motion) (6-9)
1
g = [(Ki + Kp) — (K§ + K§ — KiK,)'/?3)'2, (6-10)
/ »
1 N (6-11)
Wy = ; [(K| + K.Z) + (Kl + Kz — KIKEJIIZ]IHE.
Eigen-vectors: (with an arbitray scaling factor) e.g. K;=1, Kp=3
A=2.65
u,=1, u=K,/(K;-m ©?2), u;=K,/(K,-m @?)
For mode 2: For mode 3:
u;=-KJ/(K+A)  ug=-KJ/(K+A) u, = - KJ/(Ky- A) uz;=KJ/(A -Ky))
=-1/5.65 = - 3/3.65 =-1/0.35 = 3/1.65
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Crystal potential

L4 POtent|a| U :%Zv¢(r(R)_r(R')):%Z'¢(R—R'+U(R)_U(R'))

f(r+a)=f(r)+a-Vf (r)Jr%(a-W2 f(r)+%(a-V)3 f(r)+...

U :Ueq —I—U harm

grem _ 1 > [u, (R)=u, (R, (R=R)u, (R)=u, (R")]
E:5=x,y,z
_0°g(n)
¢”’V_8rﬂarv :1/22/(”/ (I)[wuﬂuy



2. Normal modes of a one
dimensional monatomic lattice

(n-3)a (n-2)a (n-1l)a na (n+1)a (n+2)a (n+3)a
un-3 un-2 un-l un un+1 un+2 un+3

U=%K X, (Uq-U,)?

F.=K(u,,;-u)+K(u, ;-u)=mi, =-m w?u,

n

Bloch theorem: u,, = esau_
_ ik
So,u,,,=etkay_

Thus, -m@?2u, = K [eka+eka -2] u_ = 2K [cos(ka)-1] u,,



Dispersion relation of a one
dimensional monatomic lattice

(n-3)a (n-2)a (n-1l)a na (n+1)a (n+2)a (n+3)a
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D D D D D D ® D ®
: : K
i s =2/~ |si ék
a(k) M|Sm a|
Acoustical branch : = Mka for ka—0
a 2



3. Two Ions per primitive cell

M, M, M, M, M, M,
o ol ol

M, M, M M,
— |t =

Ujn1 Uppg Uy U,

n Uina Uspyr Uppeo Usppo

Fio= KUy -up ) + KUy 47Uy ) =-my @2 Uy

I:2,n =K (ul,n+1'u2,n) +K (ul,n'uz,n) =" MZ @2 u2,n

K (u2,n - l'Il,n) +K (u2,n e-ida - ul,n) =-my @2 u1,n
K(u,e®@-u, )+ KU ,-Uy,) =-M,2u,,

2K-m; w? -K(1+e'9?)

K(ei9a+1) 2K -m, @2



Solutin for two ions per primitive cell

(2K-m, @2?)(2K-M, @ ?)-4K?cos?(¥2 qa)=0

@? = K(m+M,)/(m,M,) £ K [(m;+M,)?/(m,;M,)?-4sin?(*2 qa)/m M, ] *

M, M,
w2 = o ® o ® o ® o ® o ®
K(m,+M,) ’_\Q@_
E Kk
(m;M,)
Acousticalé
> kK Transverse Optical mode
Kk

v

@/1\\0 X X X
Transverse acoustical mow

Ty

v



Optical mode

Because the long wavelength
optical modes in ionic crystals can
Interact with electromagnetic
radiation, and are responsible for
much of the characteristic optical
behavior of such crystal

D=¢E +4zP

The oppositely charged ions in
each primitive cell undergo oscillate
against each other, giving rise to a
non vanishing polarization density

v



Interaction with electromagnetic field

Dipole moment of the primitive cell P=eW W=u =-u
5

The displacement of the positive

and negative ions satisfy o’u*

) M, =-K(u"-u")+eE"
equations ot’
M_ azuz‘ =—-K(Uu —-u*)—eE"
which can be written ) ot
oW e K
— = E-——W
Where M is the ionic reduced ot M M
mass, -1 | 1
M7 =(M,)" +(M)
For E"=Re(E,e™™) we obtain W =Re(W,e )W, = SEO / M2

O —a

10'to 1072 eV /



Lattice vibrations in 3D crystals

Let R, = RY +u®. Tayler expand inter-atomic potential

U({R}) around {Rg}:

U(R}) = E,({R}) + 5 X u® D -u)

27
D;;(R;, Ry) = %
du; " du;

[Use translational invariance:
U{R. + Ry }) =U({R,})
= .D»jj (Rﬂ + R1,Rﬂr +R1) = .DU(Rﬂ..Rﬂ:) for any R1
So, Dj;(Ry, Ry) = Dij(R; — Ry, 0) = Dy (R — Ry,

Normal-mode transformation:

We expect the normal mode solution to take the form

1 RO
(o) Relé (k ik-RY
u ————Reléx(k)e
Vel li)e
1 _
Define D (k) = i Y DR ™*Ri. .. dynamic matrix

NOTE: D(k) =D(k +G), D*(k) = D(-k), D(k) = D" (k).
where D(k)-é\(k) =wi(k)énk); A=1,2,3

wh=normal mode frequency. €,= polarization vector .



Valence force field (VFF) Model j[

™

]

T ZZ jk(d d|k+d0|jd0|k/3) /dOudO,i

i j;tk

= izzau(dﬁ _dO'J) /d(f”

3
i labels atom positions ‘ d., d;,
] , k label nearest-neighbors of 1
d;; = bond length joining sites 1 and |
dy i 1s the corresponding equilibrium length
o= bond stretching constants
d jj= bond bendlng constants 4
We take duk diidix



Theory of Elasticity

After distortion. the lattice vectors become

R' =R +u(r) = (n +ug )& + (ng +uy )y + (03 +u, )2 =@ + my’ +nsi,

where 7', ¢, 2’ are primitive lattice vectors for the distorted lattice. We define

' = (1 + €30 )T + €yl + €222, § = €l + (1 +€4)7 + €. 2

&y
|

— F—:.r!}-'r + E:yf} + (1 +E::)£-

Uy = M€y + ﬂ'EEy.r: +nge.,
Thus Uy = M€y + No€yy + N3y

U, = M €py + Moy, + Nat,

In the continuum limit (ny.ne.n3) — (z,y, z) and we obtain ¢; = (d-r—J)

~ ~

= 1 — . ot o T e -
The strain tensor (e;;) is defined as e;; = ez = 2% - T; — d;;.

_ —
Err = €px = G-

o _ _ duy,

Cyy = &y = 3y

hi -

22 = Jy

= F—ia(l + F-.]c.r::] + F—.rzy(l + Eyy:] + €€y Eyr + Ery
=y +E:y

PZ.]’: = EZ.]’: + E.]':Z



Strain tensor :
€, 5;=9OU,/OX ;+0u, [Ox, Ifa #p
e, ,=9u,/ox,

Dilation = fractional increase in volume

A= ——— =e;; + ey, +€e;.... hydrostatic component

(pf)V =2-(j x 2) =1 (in units of a*)

1 + €rr F—.r:g,r €rz
B -  f AN _
\ _'E'(y}{“)_ €z J-'l'Ey*y gz
€ar F—:y 1 + €zz

=1t epr +eyy + e



Stress & Strain

* Stress: (force per unit area)
T.. = i-th component of force per unit area acting on a surface with normal direction ||z,
i i

The stress must be applied such that the net torque and net force are zero (so the solid

remains at rest )
Ti; = Tj, is a symmetric tensor.

So, we only need six components.oc = xx, Yy, 22, Yz, 2T, TY.

* Hooke’s Law: For small deformation, the strain is linearly proportional to the stress:
€a = ZS&}%?} = SasTs
3

(the sum over repeated subscripts is implied)
Sap is called the compliance tensor.

The inverse of the above gives

To = Y_Cages,
3

where C,5 is called the elastic (stiffness) constants.



Elastic energy density

" 5 , :
Define U = = Y _Caseats to be the elastic energy per unit volume.

e
15} 1 - i 1 ~ ~
Th=5—=3 Zcﬂ.ﬁ (%fffﬁ +Eﬂ=d.3ff-) = Z(Cﬂﬁ + C.Sfr-)ﬁ.rif = Zcﬁﬂ- €g
dep 2733 273 3

Thus the elastic constant tensor is also symmetric.

=[] = 1 Y Coplats = ! > Tata
2 ad 2

o]

*Example: For cubie crystals, x. y. z directions are equivalent.

So, we have C'y = Cyp = Chy,C1z = C13 = Cyy, Cyy = Cs5 = Clg.

[l

I

)+ Cua (F;r + e + Fiy)] + Cra(eyy€ss + €22€2z + Ex2€yy).

=
i

1 1
r 2 2 2
U= 2 D> Capeats = 5[(711 (€2 + €4y T€
e
Terms like e,.€.,, €,:€.5. €5.€,. vanish, since they are invariant under 4-fold rotations, i.e.

Cu = Cm = Clﬁ =C45 = C4ﬁ = Cﬁﬁ = ().



* Strain stress table

Erx Eyy €22 €, Ezrx Ery

=
e

a
=
(9
52

0 0 0

Ty Ci2 Cn Ciz 0 0 0
T.. Cop Cy Cyp 0 0 0
Tp. 0 0 0 Cyu 0 0
T.. 0 0 0 0 Cyu 0

»
s

0O 0 0 0 0 Cu

[nverting the matrix, we have

Su = Cp, (S11 — S12) = (Ci1 — e12) 7, (S11 +2519) = (C1y + 2C13)



Elastic wave equation

* Bulk modulus, B = —VdP/dV

e.. = 0 (uniform dilation)

For hydrostatic strain, e,, = e,, =

Ery = €y = €5, = 0 (no shear strain )

~ . ‘ 1 .
U = %(611 —+ 2712 )F"Err — E(CH + 2C" 12 ]‘jg
)

AV i
=

— = €zxx + Eyg,r + €=

=
1
B = (dV/d§)/5 = z(Cu +2C12) = 1/K,

where K’ = — 21 L i5 called compressibility.

*» Elastic wave equation:

Fu, & 15, a
Por oz oy 5z

or ;}{a{;;i = > (8T:,;/9x;)(p = mass density)
' J

B D€ 4 Oeyy  Oe.. ey, e ..
= ' Do +C1-3[: o -+ . )+ Cilil[: 9y -+ = :]




Sound velocity

Since e;; = du ;/0z;, we have

P 2
y >

920y | 920z

o’ P, Pu,  Pu,
= =Ch -~ +Cu( 5~ =)+ (Cra +Cus ){

P o 02 A2 + iy )

The permutation (z — y,z — z) gives two other equations for u, and wu,.

*[100] propagation:

uy = upe** 79 a trial solution)

= w?lp = —-Cp K

v =w/k = \/Cufﬂ = sound velocity of longitudinal wave.

i(ky—wt
Try u, = voe' ™" (a transverse wave or shear wave)

2 ) #
=S wp=—-Cuk =vn=wlk= \/C44 /p = sound velocity of transverse wave



Rigid-ion model for 3D crystals

e Rigid-ion model (RIM) for phonons:

Consider a zincblende crystal. Each unit cell has two ions with effective charges —() and (). Assume

that the electronic cloud moves rigidly with the ions.
NOTE: This is different from adiabatic approximation, since the electron charge density [p({r}, {R})/*

around ions should be deformed as ions move. We wish to solve the equation of motion

S DI )y = MyuP(k)e); 0 =1, j =z,9,2,
aj

where D75 (k) = Y D% (R +8, — S, )k (R+S=52)
R

R = lattice vectors, S;(o = 1,2) = position vectors of ions within the unit cell, and

AU

f?-ugﬂj (R )f?-ugf ) (0)

DY(R +8S, —Sy) =



Short-range & Long-range interaction

[/ is the inter-atomic potential.

*NOTE: D3R +8,—S») =D (-R—8, +8x).

The inter-atomic potential includes electron-ion interaction and the ion-ion interaction, screened

by the valence electrons

Thllﬁ._. L‘T = {J'TEJ'R -+ L‘T(;._.

2
B Z Q 0
Z R, -R,|

Usr = short-range correction. Similarly, D = Dgp + D¢ (dynamic matrix). The columb term
can be calculated exactly, whereas the short-range term is treated empirically. Symmetry can
be used to reduce the number of empirical parameters.
Example: An eleven-parameter RIM for zinchlende crystals [K. Kunc et al. Phys Status Solidi
B72, 229(1975)].
The short-range term is trunctated at the second neighbors:
(i) nearest-neighbor term: S = (1,1,1), (1,—1,-1),(-1,1,—-1),(—1,—1,1) (in units of a/4).
For S = (111)

where Upq = = effective charge-transfer

A B B
D%S)=D*(-8)=| B A B
B B A



(ii) 2nd-neighbor term: R = (£2, £2,0), (£2,0,£2), (0, £2, £2). For R = (2, 2,0)

Cs D, E;
DR=[D"(-R)]'=| D, C, E, |:0=12
-E, —E, F,

*NOTE: The harmonic energy

1 r ’
[jharm _ 5 > u”(R)-D(R+S,-R -8, ) -u”)(R)

RR/ 00’
The net force exerted on an atom at (R + S, ) is

> D (R4S, -R' -8, )-u")(R),

R'c’
which vanishes if ul”/(R') = d.

=Y D (R+S, —S,) =0.

So, D' (0) + iD” (S)+ > D' (R)=0
s R
D*#(0) +>_D*(-S)+>_D*R)=0
5 R

= D" (0) = —4(A, +2C, + F, 1.



Examples of phonon bands

—: non - cential forces med Hergsma FIG, 1. Dispersion
Z n S oga | | -—-—-—- : ceniral 29 reighbaur forces E:‘: HF:E:::I'%'_;'WI curves of Zn8 and Insh oal-
g ABE® version DOl easut e culated using the 15-param-
r =" eter version of the DDM
J (aolid lines) compared to
neutron and optical mea-
o B v surements of phonon fre-
100 ¢ Py ™ F - quencies (Refs, 29{(a) and 31—
‘ L, 35 for Zns8, and Ref, 36 for
TR Insh), Various stages in
the process of determina-
tion of parameters lead to

0 0.2 0.4 0B 0.81.01.0 0.8 0.6 0.4 0.2 0 0 0.10.2030.40.35

r £100] " ‘ 1101 r [111] L simplified models which
are represented by broken
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L i nan = cenfrgl farces I'Lﬂighbﬂl" central foroces
InSb  oBa ——— | central 2 neighbour forces and central springs, re-

I JABus” versian

spectively), The results of
similar ealeulations for
ZnSe, GaP, GaAs, SiC,
CuCl, and Cul are given in
Ref 4,

D & N . =3 ek i i
0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 . 0.2 o 0 0.10.20.3 0,4 0.5
r Cio0] X K 1107 r 111 L

Kunc & Balkanski, Phys. Rev. B 12, 4346 (1975)



Performing the Ewald sum

*NOTE: The Coulomb term contains a summation of alternating series which converges extremely
slowly. Any truncation of the sum at finite R, — R, | can lead to error due to boundary terms. To
overcome this difficulty, one can use the Ewald’s method.

e Ewald’s method for evaluating the Coulumb term:
Write Vir) = ,}a:-; the sum of a fast-decayng and a slow-decaying term,

V(r) = Vp(r) + Vi(r)

where Vp(r) = %ﬂfﬂ{f.‘t‘]“} and Vg(r) = }—,e*rf{n*r},

2 [“ g
erf(er)=— [ e "dt=1—erfe(zx).
=2 fel)
« 18 an adjustable parameter.

Define ¢(k.r) =3 (r + R)e™F = %Z (G + K)o i(GRT
R (e

where V(k) = [d*rV(r)e'™™, v = unit cell volume. So.

1 . )
d(k,r) = = > V5(G.K)e (FHOT 4 3 V(x4 R)e™ T
(e R

~ 4 2 il
Note: Vs(k) = k—_ge_k /107 ig fast-decaying in k-space.



‘}'2
D% (k) = —° k. r)l—s _s ..

! 7 —i . - , ik
= Qo Qo [~ V5(G +k)(G +k);+ (G +k)ye (FHIE 50 1 5 1 i (R + 8, — S )™ M),
e R
where
{?2 _ :f’.r‘j']‘jf e {ijj"r‘-z 2o

_ b )
N Ar;0r Vr(r) ro erfelar)

2 TaT 4 q s .
Hj‘_‘f'{r} e’ [E.TJI — %{2&'31"3 +tﬂ].

VT2 T
*NOTE: The self-interaction term must be excluded. In the real-space sum of V', we must exclude the

term R = (. This is indicated by ) i in the fast-decaying term. For the slow-decaying term, we simply
subtract ;?r?,;r—f'l{ﬁ'{l'ﬂr:ﬂ-

2 [ 200 2a’r?
For r — 0, Vg(r) = Nz [ 1—¢dt = S
mr Jo

a? Ve (r)] 4o’
T = — _ﬁ .
Or;0ry S 3/ E




Concept of Phonons

*x Phonons: quantization of lattice vibration

1. Energy of a vibrational mode (normal mode) with frequency w is F =
(n + 1/2)hw, which corresponds to the creation of n quanta(phonons). The
ground state (n = 0, or zero phonon) has an energy é—hm (zero-point motion).
2. Phonon is particle-like, and it has a momentum %k (k restricted in the
Ist Brillouin zone) Because k and k' = k + G are equivalent, we call the
momentum the ”crystal momentum” .

3. Phonons are bosons, so more than one phonon can occupy the same mode.

Average occupancy: N (n 0, ) =




Netron scattering from Phonons

Typically G = 0 (normal process) has the largest contribution and G # 0
(umklapp process) are less important.

Use the energy conservation : q

nzkﬂi h?ﬂ k!Z
= + hw. -
oM, 2M, absorption

Measuring the energy (~ k*) of the scattered neutron as a function of scat-

tered angle 6, where K
k2 + k2 — 2kK cos 6 = ¢2 9
allows one to determine w versus q. emission

 Phonon excitation is the main reason that
resistivity of metal, alloy, and semiconductor k' =k + v
occurs at room temperature. o
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4. Phonons In superlattices

A=GaAs
B=InAs

Phonons confinement



Physical Review B 31,2080 (1985)

» Folded acoustic and quantized optic phonons in GaAs/AlAs

v
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FIG. 1. The dispersion curves of bulk AlAs calculated by us-
ing 11-parameter rigid-ion model. The solid curves are the re-
sults of parameters fitted to the existing experimental data, and
the dashed curves are the results of parameters fitted to the
theoretical calculation of Yip and Chang (Ref. 13).

S.-F. Ren, H. Chu, and Y. C. Chang, Phys. Rev. B 37, 8899 (1988).



Zone-folded Phonons in SL
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FIG. 2. (a) The dispersion curves of a (2,2) GaAs-AlAs super-
lattice along [001]; (b) GaAs bulk phonon dispersion curves
along [001] folded over the same period as {(a); (c}) AlAs bulk
phonon dispersion curves along [001] folded over the same
period as {a). The solid curves are transverse modes {doubly de-
generate) and the dashed curves are longitudinal modes,
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FIG. 3. Dispersion curves of (2,2) GaAs-AlAs superlattice
along [110] and [100].



Angular dispersion at k=0
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FIG. 4. Frequencies of zone-center (k=0) optical modes for
a (2,2) GaAs-AlAs superlattice as functions of 6.



Angular dispersion at k=0
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FIG. 6. Angular dependence of the optical phonons at the
Brillouin zone center as a function of @ for a (7,7) GaAs-AlAs
superlattice.



SL phonon bands
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FIG. 12. Dhspersion curves of a (7,21) GaAs-AlAs superlat-
tice along [110] and [100].



Projected bulk phonon bands
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FIG. 13, Projected phonon bands of the bulk of GaAs along .
[100] and [110]. FIG. 14. Projected phonon bands of the bulk of AlAs along

[100] and [110].



Extracted interface phonon modes in SL
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FIG. 15. Dispersion curves of interface modes for the (7,7)
GaAs-AlAs superlattice. Solid curves, macroscopic interface
modes; dashed curves, microscopic interface modes.
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PL of InAs/GaAs self-assembled QDs

Stranski-Krastanov growth
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Phonon bottleneck in QD

 In polar semiconductor
e Quantum dots with discrete states

N




