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• II-1. Lattice vibrations    (10/29)
• II-2. Electronic States    (11/05)
• II-3. Energy Bands         (11/12)
• II-4. Lattice Thermal Properties   (11/19)
• II-5. Electrical & Thermal conduction (11/26)
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Lattice Vibrations
1. Harmonic Approximation

2. Vibration of crystal with monatomic basis

3. Two atoms per primitive cell

4. Phonons in Superlattices

HW assignment: Ch. 6, Problems 5, 6, and 8.



1. Harmonic approximation
• The lattice of points, specified by vectors R.
• A particular instantaneous configuration of ions. The ion whose 

mean position is R is found at r(R)
• If u(R)= r(R)-R is small, we can approximate the potential 
• U(r-R) by ½ K (r-R)2 = ½ K u2 …… harmonic approximation

R r(R)

R
r(R)

u(R)



Simple Harmonic Motion

U(r-R) = ½K (r-R)2

F = - Ə U/ Ə r = -K u

r
R

U

m

F = ma = mü = - K u

u(t)=Acos(ω t);   ω2 = K/m

Force constant



Three coupled oscillators

u1 u2 u3

K1 K2



Solving coupled equations

Replace ü by - ω2 u  
everywhere

K1 -K1 0          u1                              u1

-K1 K1+K2 -K2            u2      = mω2 u2

0        -K2 K2           u3                               u3

Rearrange into an eigen-value equation



Solution
Eigen-values:

Eigen-vectors: (with an arbitray scaling factor)

u2=1,  u1=K1/(K1-m ω2),   u3=K2/(K2-m ω2)

For mode 2:                                                   For mode 3: 

u1= - K1/(K2+Δ)      u3= - K2/(K1+Δ)               u1 = - K1/(K2- Δ)    u3= K2/(Δ -K1)

= -1/5.65                = - 3/3.65                         = - 1/0.35              = 3/1.65

Δ

e.g. K1=1, K2=3

Δ=2.65

(Pure translational motion)



Crystal potential
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2. Normal modes of a one 
dimensional monatomic lattice

na (n+1)a (n+2)a (n+3)a(n-1)a(n-2)a(n-3)a

un-3 un-2 un-1 un un+1 un+2 un+3

U = ½ K Σn (un+1-un)2

Fn = K(un+1-un)+K(un-1-un) = mün = - m ω2 un

Bloch theorem: un+s = e iksa un

So, un ± 1 = e ± ikaun

Thus, -mω2 un = K [eika+e-ika -2] un = 2K [cos(ka)-1] un



Dispersion relation of a one 
dimensional monatomic lattice
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3. Two ions per primitive cell
1M 2M

u1,n-1 u2,n-1 u1,n u2,n u1,n+1 u2,n+1 u1,n+2 u2,n+2

F1,n = K (u2,n-u1,n) + K (u2,n-1-u1,n) = - m1 ω
2 u1,n

F2,n = K (u1,n+1-u2,n) + K (u1,n-u2,n) = - M2 ω
2 u2,n

K (u2,n - u1,n) + K (u2,n e-iqa - u1,n) = - m1 ω
2 u1,n

K (u1,n eiqa - u2,n) + K (u1,n - u2,n)  = - M2 ω
2 u2,n

2K-m1 ω
2 -K(1+e-iqa)

=  0
-K(eiqa+1)      2K -m2 ω

2

1M 2M 1M 2M 1M 2M 1M 2M



Solutin for two ions per primitive cell

1M

k

Optical

Acoustical

2M

k

k
Transverse Optical mode

Transverse acoustical mode

(2K-m1ω
2)(2K-M2ω

2)-4K2cos2(½ qa)=0

ω2 = K(m1+M2)/(m1M2) ± K [(m1+M2)2/(m1M2)2-4sin2(½ qa)/m1M2 ] ½

ω2 =

K(m1+M2)

(m1M2)



Optical mode
• Because the long wavelength 

optical modes in ionic crystals can 
interact with electromagnetic 
radiation, and are responsible for 
much of the characteristic optical 
behavior of such crystal

• The oppositely charged ions in 
each primitive cell undergo oscillate 
against each other, giving rise to a 
non vanishing polarization density
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Interaction with electromagnetic field

• Dipole moment of the primitive cell
• The displacement of the positive 

and negative ions satisfy 
equations

• ,which can be written 

• Where M is the ionic reduced 
mass,

• Fo r                            ,    we obtain
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Lattice vibrations in 3D crystals



Valence force field (VFF) Model
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i labels atom positions  
j , k label nearest-neighbors of i  
dij = bond length joining sites i and j  
d0,ij is the corresponding equilibrium length 
αij= bond stretching constants 
d ijk= bond bending constants  
We take dijk

2 = dijdik 
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Theory of Elasticity



Strain tensor :

eα β = Əuα /Əx β + Əuβ /Əxα if α ≠β

e α α = Əu α /Əxα



Stress & Strain



Elastic energy density





Elastic wave equation

)



Sound velocity



Rigid-ion model for 3D crystals



Short-range & Long-range interaction





Examples of phonon bands

Kunc & Balkanski, Phys. Rev. B 12, 4346 (1975)



Performing the Ewald sum





Concept of Phonons
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Netron scattering from Phonons

• Phonon excitation is the main reason that 
resistivity of metal, alloy, and semiconductor 
occurs at room temperature.  
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Well, Wire and Dot

• Well (2d)

• Wire                              Dot

nm

A B Anm

nm
(1d)

(0d)



4. Phonons in superlattices

• A

B

A

B B

A

A=GaAs
B=InAs

A

B

k

36mev
24mev

z

Phonons confinement



Physical Review B 31,2080 (1985)
• Folded acoustic and quantized optic phonons in GaAs/AlAs
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S.-F. Ren, H. Chu, and Y. C. Chang, Phys. Rev. B 37, 8899 (1988). 



Zone-folded Phonons in SL 





Angular dispersion at k=0



Angular dispersion at k=0



SL phonon bands



Projected bulk phonon bands



Extracted interface phonon modes in SL
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Iexc = 5W/cm2

λexc = 514.5nm
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PL of InAs/GaAs self-assembled QDs

Z. Chen and A. Madhukar (USC)

GaAs

InAs

Stranski-Krastanov growth



Phonon bottleneck in QD

• In polar semiconductor
• Quantum dots with discrete states
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