

Electrical & Thermal Conduction

- Thermal conductivity
- Electron dynamics
- Fermi-Dirac distribution
- Electronic heat capacity
- Boltzmann transport theory
- Relaxation-time approximation
- Electron mobility
- Hall Effect

Thermal conductivity

$\mathbf{J}_u = -K\Delta T$, where ΔT is the temperature gradient.

\mathbf{J}_u = flux of thermal energy

\mathbf{J}_A = flux of $(A) = \frac{\Delta A}{\Delta t}$ / unit area = $\rho_A \cdot \mathbf{v}$.

Thermal energy density gained due to particle flow between t and $t + \tau$.

$u = -nc\Delta T = -C\Delta T$, C = heat capacity/volume = $-C\left(\frac{dT}{dx}\right)v_x\tau$.

$v_x\tau$ = distance travelled within time τ . τ = mean free time.

$J_u = \langle ncx \rangle = -c\left(\frac{dT}{dx}\right) \langle v_x^2 \rangle \tau = -\frac{1}{3}c \langle v^2 \rangle \tau \left(\frac{dT}{dx}\right) = -\frac{1}{3}Cvl \left(\frac{dT}{dx}\right)$,

where $v = \sqrt{\langle v^2 \rangle}$ = average particle velocity, $l = v\tau$ = mean free path

$\Rightarrow K = \frac{1}{3}Cvl$... valid for both phonons and electrons.

Phonon mean free path is determined by phonon-defect scattering or phonon-phonon scattering,

$$l^{-1} \propto \text{scattering rate} \propto \text{number of phonons available}$$

$$\langle n \rangle = (e^{\hbar\omega/k_B T} - 1)^{-1} = k_B T / \hbar\omega \text{ for } k_B T \gg \hbar\omega.$$

So, at high temperature ($k_B T \gg \hbar\omega$) number of phonons $\propto T$ and $l \propto 1/T$ due to phonon-phonon scattering.

Note: Any momentum-conserving scattering ($\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3$) (N-process) will lead to no change in thermal current. Only the Umklapp process (U-process), in which $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_3 + \mathbf{G}$, \mathbf{G} = a nonzero reciprocal lattice vector, can change the thermal current and establish thermal equilibrium.

★ Geometric effect (phonon-scattering due to boundaries)

l is limited by the width of the sample (D). When phonon-phonon scattering becomes negligible at the low temperatures, the geometric effect prevails, and we have $K \sim CvD$. Thus,

$$K \sim \begin{cases} T^3 & \text{as } T \rightarrow 0 \\ T^{-1} & \text{as } T > \Theta_D \end{cases}$$

Electron dynamics

Electron velocity:

$$\langle \mathbf{p} \rangle = -i \hbar \nabla \mathbf{u}^*(\mathbf{r}) - \mathbf{u}(\mathbf{r}),$$

where

$$\psi(k, r) = e^{ik \cdot r} u(k, r)$$

$$\langle \mathbf{p} \rangle = \hbar \mathbf{k} - i \hbar \nabla \mathbf{u}^*(\mathbf{r}) - \mathbf{u}(\mathbf{r}) = \hbar \mathbf{k} + \langle \mathbf{p} \rangle_u$$

Now consider the S.E. for u

$$H u(k, r) = \left[\frac{-\hbar^2}{2m} \nabla^2 + \frac{\hbar}{m} \vec{k} \cdot \vec{p} + V_0(r) \right] u(k, r) = \left[E(k) - \frac{\hbar^2 k^2}{2m} \right] u(k, r)$$

$$\langle \mathbf{p} \rangle_u = (m/\hbar) \langle \partial H / \partial \mathbf{k} \rangle_u = (m/\hbar) \partial E(\mathbf{k}) / \partial \mathbf{k} - \hbar \mathbf{k} \quad \dots \dots \text{Feynman-Hellman Thm.}$$

So, we obtain the group velocity for electron in solids

$$v_k = \langle \mathbf{p} \rangle / m = (1/\hbar) \partial E(\mathbf{k}) / \partial \mathbf{k}$$

Free Electron Gas

Electrons in the conduction band of a semiconductor or metal behave like free moving particles with effective mass m , which is usually smaller than the bare electron mass. A free particle satisfies the Shrödinger equation

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi(\mathbf{r}) = \epsilon \psi(\mathbf{r})$$

[Note: $\mathbf{p} = \hbar \mathbf{k} = i\hbar \nabla$ in QM]

Solution: $\psi(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}}$ subject to periodic boundary conditions $\psi(0) = \psi(L)$

$$\Rightarrow k_x = n_x \left(\frac{2\pi}{L} \right), k_y = n_y \left(\frac{2\pi}{L} \right), k_z = n_z \left(\frac{2\pi}{L} \right),$$

$$n_x, n_y, n_z \text{ are integers} \Rightarrow \sum_{\mathbf{k}} = \frac{V}{(2\pi)^3} \int d^3k.$$

Dispersion relation: $\epsilon(\mathbf{k}) = \frac{\hbar^2}{2m} k^2$.

DOS: $D(\epsilon) = \sum_{\mathbf{k}} \delta(\epsilon - \epsilon(\mathbf{k}))$

$$N(\epsilon) = \sum_{\mathbf{k}} \theta(\epsilon - \epsilon(\mathbf{k})) = \sum_{\mathbf{k}} \theta(\bar{k} - |k|) \Big|_{\bar{k} = \sqrt{2mE/\hbar}} = \frac{V}{(2\pi)^3} \frac{4\pi}{3} \bar{k}^3 = \frac{V}{2\pi^2} \frac{1}{3} \left(\frac{2mE}{\hbar^2} \right)^{3/2}.$$

$$D(\epsilon) \frac{dN}{d\epsilon} = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2} \right)^{3/2} \epsilon^{1/2}.$$

Spin degeneracy: Each electron has two internal degrees of freedom, which [Cf: each phonon has three internal degrees of freedom] are described by spin-1/2 (up and down).

Fermi-Dirac distribution

Average occupancy of a state with energy ϵ in a system maintained at constant temperature ($\tau = k_B T$) and chemical potential (μ) is

$$f(\epsilon) = \frac{1}{e^{(\epsilon-\mu)/\tau} + 1}.$$

Gibbs factor: The relative probability of finding a system with N particles and energy ϵ_N in thermal and diffusive contact with a reservoir with temperature τ and chemical potential μ is

$$G(\epsilon) = \frac{1}{\mathcal{Z}} e^{-(\epsilon_N - \mu N)/\tau}; \mathcal{Z} = \sum_N e^{-(\epsilon_N - \mu N)/\tau}$$

$$\Rightarrow \langle n \rangle_\epsilon = \frac{1}{\mathcal{Z}} e^{-(\epsilon - \mu)/\tau} \equiv f(\epsilon)$$

for fermions, where $\mathcal{Z} = 1 + e^{-(\epsilon - \mu)/\tau}$.

Meaning of Chemical potential for fermions: At $\tau = 0, \mu(0) = \epsilon_F$ is the energy (Fermi energy) below which all states are occupied and above which all states are empty. At finite τ , the states with energy near $\mu(\tau)$ are partially occupied, and the level $\mu(\tau)$ is determined by either the reservoir in contact or the total number of particles in the system, $N(N \ll 1)$.

$$N = 2 \sum_{\mathbf{k}} f(\epsilon(k)) = \int D(\epsilon) f(\epsilon) d\epsilon = 2 \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty \epsilon^{1/2} \frac{1}{e^{(\epsilon-\mu)/\tau} + 1} d\epsilon.$$

The factor 2 is due to spin degeneracy. At $\tau \rightarrow 0, \mu \rightarrow \epsilon_F$

$$\begin{aligned} N &= \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^{\epsilon_F} \epsilon^{1/2} d\epsilon = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \left(\frac{2}{3} \epsilon_F^{3/2}\right) \\ &= \frac{V}{3\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \epsilon_F^{3/2} \Rightarrow D(\epsilon) = \left(\frac{3N}{2\epsilon_F}\right) \left(\frac{\epsilon}{\epsilon_F}\right)^{1/2}. \end{aligned}$$

Fermi wave vector k_F is related to ϵ_F via

$$\epsilon_F = \frac{\hbar^2}{2m} k_F^2 \quad \text{or} \quad k_F = \sqrt{2m\epsilon_F}/\hbar.$$

It is related to N via

$$N = 2 \sum_{\mathbf{k}} f(\epsilon(k)) = 2 \sum_{\mathbf{k}} \theta(k_F - |k|) = 2 \frac{V}{(2\pi)^3} \int d^3 k \theta(k_F - |k|) = \frac{V}{3\pi^2} k_F^3$$

$$\text{or } k_F = (3\pi^2 N/V)^{1/3}$$

Fermi velocity, v_F

$$v_F = p_F/m = \hbar k_F/m = \left(\frac{\hbar}{m}\right) (3\pi^2 N/V)^{1/3}$$

Electronic Heat Capacity

Total electron energy at temperature τ is

$$U(\tau) = \int D(\epsilon) \epsilon f(\epsilon) d\epsilon = \left(\frac{3N}{2\epsilon_F^{3/2}}\right) \int \epsilon^{3/2} f(\epsilon) d\epsilon = \left(\frac{3N}{2\epsilon_F^{3/2}}\right) \frac{2}{5} \epsilon_F^{5/2}$$
$$= \frac{3}{5} \epsilon_F \quad \text{as } \tau \rightarrow 0.$$

$$C_{el} = \frac{\partial U}{\partial T} = \left(\frac{\partial U}{\partial \tau}\right) k_B.$$

$$\left(\frac{\partial U}{\partial \tau}\right) = \int_0^\infty \epsilon D(\epsilon) \frac{\partial f}{\partial \tau} d\epsilon$$

$$\text{and since } \epsilon_F \frac{\partial N}{\partial \tau} = 0 = \int_0^\infty \epsilon_F D(\epsilon) \left(\frac{\partial f}{\partial \tau}\right) d\epsilon$$

$$\Rightarrow C_{el}/k_B = \int_0^\infty (\epsilon - \epsilon_F) D(\epsilon) \left(\frac{\partial f}{\partial \tau}\right) d\epsilon$$

$$\frac{\partial f}{\partial \tau} = \frac{\partial}{\partial \tau} \left[\frac{1}{e^{(\epsilon-\mu)/\tau} + 1} \right] = \frac{\partial}{\partial x} \left(\frac{1}{e^x + 1} \right) \frac{\partial x}{\partial \tau} = \frac{e^x}{(e^x + 1)^2} \frac{x}{\tau},$$

$$\text{where } \mu(\tau) = \epsilon_F + \frac{\partial \mu}{\partial \tau} \tau; x \equiv (\epsilon - \epsilon_F)/\tau.$$

$\partial f/\partial \tau$ is sharply peaked at $x = 0$ (or $\epsilon = \epsilon_F$).

$$\Rightarrow C_{el} = D(\epsilon_F) \int_{-\epsilon_F/\tau}^\infty \frac{x^2 e^x}{(e^x + 1)^2} (\tau dx) = \tau \left(\frac{3N}{2\epsilon_F}\right) \int_{-\infty}^\infty \frac{x^2 e^x}{(e^x + 1)^2} dx \quad (\text{for } \tau \ll \epsilon_F) = \frac{1}{2} \pi^2 N(\tau/\epsilon_F).$$

Heat capacity in metals:

$$C_v = C_{el} + C_{ph} = \gamma T + AT^3 \text{ for low temperatures .}$$

$$\gamma = \frac{1}{2}\pi^2 N k_B / \epsilon_F, A = \frac{3}{5}\pi^4 N_a k_B / \Theta^3.$$

Electrical conductivity:

$$\mathbf{F} = m \frac{d\mathbf{v}}{dt} = \hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{E},$$

$$\Delta\mathbf{k} = -(e\mathbf{E}/\hbar)\Delta t \text{ or } \Delta\mathbf{v} = -\left(\frac{e\mathbf{E}}{m}\right)\Delta t$$

Let $\Delta t = \tau$... mean free time (due to scattering)

$$\mathbf{J} = n(-e) \langle \mathbf{v} \rangle = n(-e)\Delta\mathbf{v} = (ne^2\tau/m)\mathbf{E} = \sigma\mathbf{E}$$

$\sigma = (ne^2\tau/m)$ is called the conductivity.

Relation between thermal and electrical conductivity

Note: At $\mathbf{E} = 0$, Fermi sphere is centered at 0 and we have $\langle \mathbf{v} \rangle = 0$, whereas as finite \mathbf{E} , Fermi sphere is displaced and $\langle \mathbf{v} \rangle = \Delta \mathbf{v} = -eE\tau/m$.

Resistivity $\rho = 1/\sigma = m/(ne^2\tau)$.

Mean free path $l = v_F\tau$ (not $\langle v \rangle \tau$ here).

In Cu, $v_F \approx 1.6 \times 10^{-8} \text{ cm/s}$, $\tau \approx 2 \times 10^{-9} \text{ s}$ (at 4K) and $\approx 2 \times 10^{-14} \text{ s}$ (at 300K)

$l \approx 0.3 \text{ cm}$ (at 4K) and 10^{-6} cm (at 300K).

Thermal conductivity:

$$K = \frac{1}{3}cvl ; c = C_{el}/\text{volume} = \frac{1}{2}\pi^2n\left(\frac{k_B T}{\epsilon_F}\right)$$

$v \sim v_F$ and $l \approx v_F\tau$.

$$\Rightarrow K = \frac{1}{3}\frac{1}{2}\pi^2n\left(\frac{k_B T}{\frac{1}{2}mv_F^2}\right) \cdot v_F^2\tau = \frac{\tau\pi^2nk_B^2T}{3m}$$

$$\frac{K}{\sigma} = K/(ne^2\tau/m) = \frac{\pi^2}{3}\left(\frac{k_B}{\sigma}\right)^2 T \equiv L \cdot T.$$

Scattering mechanisms

1. Electron-phonon scattering ($\frac{1}{\tau_L}$)
2. Electron-defect scattering ($\frac{1}{\tau_i}$) (insensitive to temperature).
Defects include impurities and lattice imperfections.
3. Electron-electron scattering. ($\frac{1}{\tau_e}$).

$$\frac{1}{\tau} = \frac{1}{\tau_L} + \frac{1}{\tau_i} + \frac{1}{\tau_e}$$

or, $\rho = \rho_L + \rho_i + \rho_e$.

$\rho_L \sim T^5$ at low temperatures (mostly due to normal electron-phonon scattering). In transport theory, we have $\langle A \rangle = \frac{1}{N} \sum_{\mathbf{k}} f(\mathbf{k}) A(\mathbf{k})$, where $f(k)$ is the non-equilibrium electron distribution.

$N = \sum_{\mathbf{k}} f(\mathbf{k})$ is the number of electrons

$$f(k) \rightarrow f_0(k) = \{e^{[\epsilon(k)-\mu]/\tau} + 1\}^{-1}$$

when thermal equilibrium is reached.

$$\mathbf{J} = n(-e) \langle \mathbf{v} \rangle = (-e) \frac{1}{V} \sum_{\mathbf{k}} f(k) \left(\frac{\hbar \mathbf{k}}{m} \right).$$

$f(k)$ is determined by the Boltzmann transport equation. In its simplest form, we have

Boltzmann transport theory

We assume that there exists a distribution function $f(\mathbf{k}, \mathbf{r}, t)$, which measures the number of carriers in state \mathbf{k} in the neighbor of \mathbf{r} at time t . The values of \mathbf{k} and \mathbf{r} are somewhat vague, subject to the uncertainty $\Delta k \Delta r = \hbar$. The "Average" of a physical quantity $A(\mathbf{r}, \mathbf{k}, t)$ is given by

$$\langle A(\mathbf{r}, t) \rangle = \int f(\mathbf{k}, \mathbf{r}, t) A(\mathbf{r}, \mathbf{k}, t) \frac{d^3 k}{4\pi^3}, \quad (n_0(\mathbf{r}) = \int f(\mathbf{k}, \mathbf{r}, t) \frac{d^3 k}{4\pi^3})$$

e.g. $J = e \int \mathbf{v}(\mathbf{k}) f(\mathbf{k}, \mathbf{r}, t) \frac{d^3 k}{4\pi^3} \dots$ electric current.

The dynamics of carriers in solid is described by

$$\dot{\mathbf{k}} = -e[\mathbf{E} + \frac{1}{c}\mathbf{v}_k \times \mathbf{H}] = \mathbf{F}; \quad \mathbf{k} = \text{crystal momentum.}$$

$$\dot{\mathbf{r}} = \mathbf{v}_k = \partial \epsilon(\mathbf{k}) / \partial \mathbf{k}; \quad \epsilon(\mathbf{k}) = \text{band energy}.$$

If no collision occurs, the number of particles is conserved, i.e.

$$f(\mathbf{r} + \mathbf{v} dt, \mathbf{k} + \mathbf{f} dt, t + dt) = f(\mathbf{r}, \mathbf{k}, t).$$

$$\frac{dt}{dt} = \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{k}} + \frac{\partial f}{\partial t} = 0.$$

with collisions:

$$\begin{aligned} \frac{df}{dt} &= \left(\frac{\partial f}{\partial t}\right)_{coll} = \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{k}} + \frac{\partial f}{\partial t} \\ &= -\left(\frac{\partial f}{\partial t}\right)_{diff} - \left(\frac{\partial f}{\partial t}\right)_{field} + \frac{\partial f}{\partial t} \dots \text{Boltzmann's equation.} \\ &\Rightarrow \frac{\partial f}{\partial t} = \left(\frac{\partial f}{\partial t}\right)_{diff} + \left(\frac{\partial f}{\partial t}\right)_{field} + \left(\frac{\partial f}{\partial t}\right)_{coll} \end{aligned}$$

total rate of change of distribution at $(\mathbf{u}, \mathbf{r}, t)$. At steady state, $\frac{\partial f}{\partial t} = 0$.

Scattering rate

$$\left(\frac{\partial f}{\partial t}\right)_{coll} = -(\text{out-scattering rate}) + (\text{in-scattering rate})$$

$$= - \sum_{k'} f_k (1 - f_{k'}) S_{kk'} + \sum_{k'} f_{k'} (1 - f_k) S_{kk'}.$$

$S_{kk'}$ = scattering rate from state \mathbf{k} to state \mathbf{k}' . e.g.

(i) Electron-LA phonon scattering

$$\begin{aligned} S_{kk'} &= 2\pi |M_q|^2 [\delta(\epsilon_k - \epsilon_{k'} - \omega_q)(N_q + 1) + \delta(\epsilon_k - \epsilon_{k'} + \omega_q)N_q]_{q=k-k'} \\ &= 2\pi |M_{k-k'}|^2 (2N_{k-k'} + 1) \delta(\epsilon_k - \epsilon_{k'}) \text{ (ignore } \omega_q \text{). (nearly elastic scattering)} \end{aligned}$$

(ii) Electron-LO phonon scattering (inelastic)

$$S_{kk'} = 2\pi |M_{k-k'}|^2 [\delta(\epsilon_k - \epsilon_{k'} - \omega_0)(N_0 + 1) + \delta(\epsilon_k - \epsilon_{k'} + \omega_0)N_0]$$

(iii) Electron-impurity scattering (elastic)

$$S_{kk'} = 2\pi | \langle k | V_{imp} | k' \rangle |^2 \delta(\epsilon_k - \epsilon_{k'}),$$

where V is the impurity potential. Microscopic reversibility (for elastic scattering)

$$S_{kk'} = S_{k'k}.$$

Linearized Boltzmann equation: (valid in low-field case)

Use $S_{kk'} = S_{k'k}$ (elastic scattering), We have

$$(\frac{\partial f}{\partial t})_{coll} = \int (f_k - f_{k'}) S_{kk'} d^3 k' = - \int [(f_k - f_k^0) - (f_{k'} - f_{k'}^0)] S_{kk'} d^3 k'$$

since $f_{k'}^0 = f_k^0 = [e^{\beta(\epsilon_k - \mu)} + 1]^{-1}$.

Assume a constant temperature gradient and electrostatic field,

$$\mathbf{v}_k \cdot \frac{\partial f}{\partial \mathbf{r}} = \mathbf{v}_k \cdot \frac{\partial f_k^0}{\partial T} \nabla T, \quad \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{k}} = -e \mathbf{E} \cdot \mathbf{v}_k \frac{\partial f_k^0}{\partial \epsilon_k}$$

$$\Rightarrow \mathbf{v}_k \cdot \frac{\partial f_k^0}{\partial T} \nabla T - e \mathbf{E} \cdot \mathbf{v}_k \frac{\partial f_k^0}{\partial \epsilon_k} = \sum_k [(f_k - f_k^0) - (f_{k'} - f_{k'}^0)] S_{kk'}.$$

For spherical energy band, $\epsilon_{\mathbf{k}} = \epsilon(k) = \epsilon(k')$

$$\Rightarrow k = k', \quad \mathbf{v}_k = \frac{\partial \epsilon_{\mathbf{k}}}{\partial \mathbf{k}} = v_k \hat{k}.$$

Try the solution $f_k - f_k^0 = \mathbf{a}(k) \cdot \hat{k}$

$$\Rightarrow (\frac{\partial f}{\partial t})_{coll} = -\mathbf{a}(k) \cdot \sum_{k'} S_{kk'} (\hat{k} - \hat{k'})$$

$$= -\mathbf{a}(k) \cdot \hat{k} \sum_{k'} S(k, \hat{k} \cdot \hat{k'}) (1 - \hat{k} \cdot \hat{k'}) = -(\mathbf{a}(k) \cdot \hat{k}) / \tau(k).$$

(*Note: $S_{kk'}$ is a function of $k = k'$ and $|\mathbf{k} - \mathbf{k}'|$ only, or $S_{kk'} = S(k, \hat{k} \cdot \hat{k'})$)

and $\mathbf{a}(k) = -v_k (\frac{\partial f_k^0}{\partial T} \nabla T - e \mathbf{E} \frac{\partial f_k^0}{\partial \epsilon_k}) \tau(k)$... exact solution.

Relaxation-time approximation

$$\begin{aligned} \left(\frac{\partial f}{\partial t}\right)_{coll} &= -(f_k - f_k^0)/\tau(k) \\ \frac{1}{\tau(k)} &= \int d^3 k' S(k, \theta') (1 - \cos \theta'). \end{aligned}$$

In the absence of field and with constant relaxation time, τ , we have

$$\left(\frac{\partial f_k}{\partial t}\right) = -(f_k - f_k^0)/\tau.$$

with solution

$$f_k(t) = f_k^0 + (f_k(0) - f_k^0)e^{-t/\tau}.$$

In the low field limit, we have

$$\left(\frac{\partial f_k}{\partial t}\right) = e \mathbf{E} \cdot \mathbf{v}_k \frac{\partial f_k^0}{\partial \epsilon_k} - (f_k - f_k^0)/\tau.$$

or (let $g_k = f_k - f_k^0$)

$$\left(\frac{\partial g_k}{\partial t}\right) = e \mathbf{E} \cdot \mathbf{v}_k \frac{\partial f_k^0}{\partial \epsilon_k} - g_k/\tau.$$

with solution

$$g_k(t) = e \mathbf{E} \cdot \mathbf{v}_k \frac{\partial f_k^0}{\partial \epsilon_k} [1 - e^{-t/\tau}].$$

DC conductivity

Consider the case $\nabla T = 0$ and $\mathbf{E} = \text{constant}$.

$$f_k = f_k^0 + e\mathbf{E} \cdot \mathbf{v}_k \left(\frac{\partial f_k^0}{\partial \epsilon_k} \right) \tau(k)$$

$$J_i = -e \int \frac{d^3 k}{4\pi^3} v_i(\mathbf{k}) f(\mathbf{k}) = e^2 \sum_j E_j \int \frac{d^3 k}{4\pi^3} v_i(\mathbf{k}) v_j(\mathbf{k}) \left(-\frac{\partial f_k^0}{\partial \epsilon_k} \right) \tau(k) = \sum_j \sigma_{ij} E_j.$$

$$\sigma_{ij} = e^2 \int \frac{d^3 k}{4\pi^3} v_i(\mathbf{k}) v_j(\mathbf{k}) \left(-\frac{\partial f_k^0}{\partial \epsilon_k} \right) \tau(k) \cdots \text{conductivity tensor}$$

Good approx. for metals NOTE: $\mathbf{v}(\mathbf{k}) \frac{\partial f_k^0}{\partial \epsilon_k} = \frac{\partial f_k^0}{\partial \epsilon_k} \frac{\partial \epsilon_k}{\partial \mathbf{k}} = \frac{\partial f_k^0}{\partial \mathbf{k}}$

So, $\sigma_{ij} = e^2 \tau(k_F) \int \frac{d^3 k}{4\pi^3} \frac{\partial}{\partial k_j} (v_i(\mathbf{k})) f_k^0$ (integration by parts)

$$= e^2 \tau(k_F) \int \frac{d^3 k}{4\pi^3} f^0(\epsilon_k) m_{ij}^{-1}(\mathbf{k}) \cdots \text{effective mass tensor}$$

$$= [ne\tau(k_F)/m^*] \delta_{ij} \text{ (for spherical nondegenerate bands).}$$

Electron mobility

- Temperature dependence of electron mobility in semiconductors:

$$\mathbf{J} = -en_0 \langle v \rangle = -e^2 \int \frac{d^3 k}{4\pi^3} \tau(k) \mathbf{v}_k (\mathbf{v}_k \cdot \mathbf{E}) \frac{\partial}{\partial E_k} f^0(E_k)$$

(in effective-mass approximation)

$$= \left[-\frac{2}{3} \frac{e^2}{m^*} \int \frac{d^3 k}{4\pi^3} \tau(k) \epsilon_k \frac{\partial f^0}{\partial \epsilon_k} \right] \mathbf{E} = \frac{n_0 e^2}{m^*} \langle \tau \rangle \mathbf{E} = \sigma \mathbf{E} = en_0 \mu \mathbf{E}.$$

$$\langle \tau \rangle = \frac{2}{3n_0} \int \frac{d^3 k}{4\pi^3} \tau(k) \epsilon_k \left(-\frac{\partial f^0}{\partial \epsilon_k} \right) = \frac{1}{n_0} \int \frac{d^3 k}{4\pi^3} \tau(k) v_z(k) \left(-\frac{\partial f^0}{\partial v_z} \right) \cdots \text{relaxation time}$$

$$\sigma = n_0 e^2 \langle \tau \rangle / m^* \cdots \text{DC conductivity} ; \mu = e \langle \tau \rangle / m^* \cdots \text{mobility}$$

$$\langle \tau \rangle \propto T^r \text{ for non-degenerate electron gas } (T > 100K).$$

$r = -3/2, -1/2, 0, 3/2$ for LA-deformation potential, piezoelectric, neutral impurity, and ionized impurity scattering, respectively.

AC conductivity

Use the relaxation-time approximation:

$$\frac{\partial f}{\partial t} + e\mathbf{E}(t) \cdot \frac{\partial f}{\partial \mathbf{k}} = \frac{f - f^0}{\tau(k)}$$

Define $f = f^0 + g(t)$ and linearize to get

$$\frac{\partial g(t)}{\partial t} + e\mathbf{E}(t) \cdot \frac{\partial f^0}{\partial \mathbf{k}} = -\frac{g(t)}{\tau(k)}.$$

Assign $e^{i\omega t}$ dependence to $g(t)$ and $\mathbf{E}(t)$

$$\Rightarrow [i\omega + \frac{1}{\tau(k)}]g(\omega) = -e\mathbf{E}(\omega) \frac{\partial f^0}{\partial \mathbf{k}}.$$

$$\text{So, } \mathbf{j}(\omega) = e^2 \int \frac{d^3 k}{4\pi^3} [i\omega + \frac{1}{\tau_k}]^{-1} \mathbf{v}_k \mathbf{v}_k \cdot \mathbf{E}(\omega) \left(-\frac{\partial f^0}{\partial \epsilon_k} \right) = \sigma(\omega) \cdot \mathbf{E}$$

$$\text{or } \sigma_{ij}(\omega) = e^2 \int \frac{d^3 k}{4\pi^3} [i\omega + \frac{1}{\tau(k)}]^{-1} v_i v_j \left(-\frac{\partial f^0}{\partial \epsilon_k} \right)$$

NOTE: as $\omega \rightarrow \infty$, we have

$$\frac{e^2}{i\omega} \int \frac{d^3 k}{4\pi^3} v_i(k) \left(-\frac{\partial}{\partial k_j} f^0 \right) = \frac{e^2}{i\omega} \int \frac{d^3 k}{4\pi^3} f^0(\epsilon_k) \frac{\partial^2 \epsilon}{\partial k_i \partial k_j} = \frac{n_0 e^2}{i\omega} < m_{ij}^{*-1} >_0 .$$

$$R_e \sigma_{ij}(\omega) = e^2 \int \frac{d^3 k}{4\pi^3} \frac{\tau(k)}{1 + w^2 \tau^2(k)} v_i(k) v_j(k) \left(-\frac{\partial f^0}{\partial \epsilon_k} \right)$$

$$I_m \sigma_{ij}(\omega) = e^2 \int \frac{d^3 k}{4\pi^3} \frac{\omega \tau^2(k)}{1 + w^2 \tau^2(k)} v_i(k) v_j(k) \left(-\frac{\partial f^0}{\partial \epsilon_k} \right).$$

Electron conduction in metals

Electron distribution is degenerate in metals,

$$-\frac{\partial f^0}{\partial \epsilon_k} \approx \delta(\epsilon_{k'} - \epsilon_F)$$

$$\text{So, } \sigma = n_0 e^2 \langle \tau \rangle / m^* \text{ with } \langle \tau \rangle = \frac{2}{3} \int \frac{d^3 k}{4\pi^3} \tau(k) \epsilon_k \left(-\frac{\partial f^0}{\partial \epsilon_k} \right) \approx \tau(\epsilon_F).$$

Resistivity, $\rho = \sigma^{-1} = \sum_i \rho_i$ (from various mechanisms) ... Mathiessen's rule. [since $\tau^{-1} = \sum_i \tau_i^{-1}$]

(i) impurity scatterings: $\tau(\epsilon_F)$ is independent of T , so is ρ_I .

(ii) Acoustic-phonon deformation:

$$\tau(\epsilon_F)^{-1} \propto T \Rightarrow \rho_{ac} \propto T \text{ (for } T \ll \Theta_D)$$

For $T < \Theta_D$, we cannot use the approximation $N_q = \frac{k_B T}{\omega_q} - \frac{1}{2}$. In this case, we cannot use the relaxation-time approximation since $S_{kk'} \neq S_{kk'}$ when N_q and $(N_q + 1)$ are substantially different. Here, we have to consider large-angle scattering with $q = |\mathbf{k} - \mathbf{k}'| / k_F$; hence the maximum acoustic phonon frequency is close to Θ_D .

Electron motion in B field

$\frac{d}{dt} \langle A \rangle = -\frac{1}{\tau} \langle A \rangle + \text{driving term} \dots \text{equation of motion due to collision.}$

Let $A = \mathbf{v} \Rightarrow \frac{d}{dt} \langle \mathbf{v} \rangle = -\frac{1}{\tau} \langle \mathbf{v} \rangle + \frac{1}{m} \mathbf{F} \dots \text{external force}$

$\mathbf{F} = -e[\mathbf{E} + \frac{1}{c} \langle \mathbf{v} \rangle \times \mathbf{B}] \dots \text{Lorentz force.}$

Let $\mathbf{B} = B_z \hat{z}$

$$\Rightarrow m \left(\frac{d}{dt} + \frac{1}{\tau} \right) v_x = -e(E_x + \frac{B}{c} v_y)$$

$$m \left(\frac{d}{dt} + \frac{1}{\tau} \right) v_y = -e(E_z - \frac{B}{c} v_x)$$

$$m \left(\frac{d}{dt} + \frac{1}{\tau} \right) v_z = -eE_z.$$

In steady state $\frac{d}{dt} \langle \mathbf{v} \rangle = 0$

$$\Rightarrow v_x = -\frac{e\tau}{m} E_x - \omega_c \tau v_y, \quad v_y = -\frac{e\tau}{m} E_y + \omega_c \tau v_x, \quad v_z = -\frac{e}{\tau} m E_z$$

$$\text{or } \mathbf{v} = -\frac{e\tau}{m} \mathbf{E} - t \mathbf{v} \times \vec{\omega}_c,$$

where $\omega_c = eB/mc$ is the "cyclotron frequency".

Let $\mathbf{E} = \mathbf{E}_e + \mathbf{E}_t$, where $\mathbf{E}_e \parallel \mathbf{v}$ and $\mathbf{E}_t \perp \mathbf{v}$

$$\Rightarrow \mathbf{v} = -\frac{e\tau}{m} \mathbf{E}_e \text{ and } \frac{e\tau}{m} \mathbf{E}_t = -\tau \mathbf{v} \times \vec{\omega}_c.$$

Hall Effect

For an applied \mathbf{E} field along x, we expect $v_x = -\frac{e\tau}{m}E_x$.

Current $J_x = n(-e)v_x = \frac{ne^2\tau}{m}E_x$ independent of sign of charge .

$$\mathbf{E}_t = \left(\frac{m}{e}\right)\mathbf{v} \times \vec{\omega}_c = \left(\frac{m}{e}\right)v_x \left(\frac{eB}{mc}\right)\hat{y} = -\left(\frac{\tau eB}{mc}\right)E_x \hat{y}.$$

Define $R_H = \frac{E_y}{J_x B} = \left(\frac{m}{ne^2\tau B}\right)\frac{E_y}{E_x} = -\frac{1}{nec}$... Hall coefficient,

which depends on the sign of charge.

$\rho_H = \frac{E_y}{J_x} = -\frac{B}{nec}$ is the Hall resistance.