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Thermal conductivity

J, = —KAT, where AT is the temperature gradient.

J, = flux of thermal energy

AA

Jy =fluxof (4) = A—/ unit area = py - v.

Thermal energy density gained due to particle flow between ¢ and ¢ + 7.

dT
u = —ncAT = —CAT, C = heat capacity /volume = —C(Ejunr.
v, T = distance travelled within time 7. 7 = mean free time.
dT 1 5 dT dT’
J, =< nex >=—c <Y >T=—"c< v >T CL
(d;r) 3 (d.-r) 3 (dr)

where v = /< v2 > = average particle velocity, [ = v7 = mean free path

= K = —C? [ ... valid for both phonons and electrons.



FPhonon mean free path is determined by phonon-defect seattering or phonon-phonon scat-

tering.
"' x scattering rate o number of phonons available
<n>= ekl _ )7V - kT il for kpT % hw.

S0, at high tempereature ( kgl % fw) number of phonons o« T and | o 1 /T due to phonon-
phonon seattering.

Note: Any momentum-conserving scattering (ky +ks = ky ) (N-process) will lead to no change
in thermal current. Ounly the Umbklapp process (U-rocess), in which k) +k; =k +G,.G =
a nonzero reciprocal lattice vector, can change the thermal current and establish thermal
equilibrinm.

* Geometric effect (phonon-scattenng due to boundaries)

[ is limited by the width of the sample (1), When phonon-phonon scattering becomes negli-

gible at the low temperatures, the geometric effect prevails, and we have K ~ Cvl), Thus,

T asT =0
T VasT =8,

K~




Electron dynamics

Electron velocity:
<p> = -ihfd°ry™(r) (),

W pkn =€ utk,n)

<p> =hk -ihf d3 u*(r) u(r) =hk + <p>,

Now consider the S.E. foru

2 N 21,2
v L BVt =[EG) - S
m 2m

Hu(k,r)=[ Ju(k,r)

2m
<p>, =(Mm/h)< OH/Bk>, = =(m/h)OE(k)/Ok — 1k ...... Feynnman-Hellman Thm.

So, we obtain the group velocity for electron in solids

v, = <p>/m = (1/h)OE(K)/Ok



Free Electron Gas

Electrons in the conduction band of a semiconductor or metal behave like free moving par-

ticles with effective mass m. which = usually smaller than the bare electron mass, A [ree
partiche satisfies the Shrddinger equation
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Spin degeneracy: Each electron has two internal degrees of freedom, which [OF each

phonon has three internal degrees of freedom| are deseribed by spin-1/2 (up and down).




Fermi-Dirac distribution

Average occupancy of a state with energy ¢ in a system maintained at constant temperature
(T = kgl ) and chemical potential () is

|

fle) = ——.
'-Ir—,lrl,"." + 1

Gibbs factor: The relative probability of finding a svstem with N particles and energy ey in

thermal and diffusive contact with a reservoir with temperature 7 and chemical potential p
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for fermions, where 2 =1 4 00T,

AMeaning of Chemical potential for fermions: At 7 =0, p{ll) = ¢p is the energy (Fermi
energy | below which all states are oceupied and above which all states are empty. At finite
7. the states with energy near p(7) are partially ocenpied, and the level g(7) is determined

by either the reservoir in contact or the total number of particles in the system, N (N < 1).
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The factor 2 is due to spin degeneracy. At 7 — 0, 0 — €p
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Fermi wave vector kp is related to ep via

€p = Ek;; or kr =+/2mer[h.

[t is related to N via

N =25 f(e(k) = 200k ~ k) = 25 | (b = k) = 3k

k

or kp = (3n?N/V)3

Fermi velocity, vy

h D e peonl
vp = pp/m = hkp/m = (a)(l}?rg_-“vﬁ")i’ﬂ



Electronic Heat Capacity

Total electron energy at temperature 7 is

£ LT
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Heat capacity in metals:
Co =Ca +Cp, =T + AT? for low temperatures .

v = 572 Nkg/ep, A = in* N,k /0P,

Electrical conductivity:

dv dk
F=m—=h— = —¢E,
ar e T
cE
Ak = —(eE /l)At or Av = —(—)At
m

Let At =7 ... mean free time (due to scattering)
J =n(—e) < v >=n(—e)Av = (ne*’r/m)E = oE

o = (ne*r/m) is called the conductivity.



Relation between thermal and electrical conductivity

Note: At E =0, Fermi sphere is centered at 0 and we have < v >= (0, whereas as finite E,
Fermi sphere is displaced and < v >= Av = —eET /m.

Resistivity p =1/0 = m/(ne’r).

Mean free path | = vp7 (not < v > 7 here).

In Cu, vp = 1.6 x 107 8%em /s, 7 2 2x 107%s (at 4K) and =~ 2 x 1075 (at 300K)

[ 2 0.3cm (at 4I) and 107°% em (at 300K).

Thermal conductivity:
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Scattering mechanisms

1. Electron-phonon scattering (;‘T)

2. Electron-defect scattering (1) (insensitive to temperature).

Defects include impurities and lattice imperfections.

3. Electron-electron scattering. ().
1 1 1 1
T TL Ti Te

or, p = pr. + p; + pe.

pr ~ T° at low temperatures (mostly due to normal electron-phonon scattering). In trans-
port theory, we have < A >= L > f(k)A(k), where f(k) is the non-equilibrium electron

distribution.

N = > f(k) is the number of electrons
£k) = fo(k) = {ele®8/7 4131

when thermal equilibrium is reached.
J=n(—e)<v>= ea%; f(k)(%).

f(k) is determined by the Boltzmann transport equation. In its simplest form, we have



Boltzmann transport theory

We assume that there exists a distribution function f{(k. r. #). which measures the nnmber
of carners in state k in the neighbor of © at time £. The values of k and r are somewhat vague,
subjpet to the uncertainty AkAr = k. The " Average”™ of a physical quantity A(r. k. f) is given

by
rl'qﬁ-
I[r:f]::_ff[kr:':lt[rkr ffu.: )
73 .

e J _:"f | Sl e A electric current.
The dyvnamics of carriers in solid is deseribed by

k = e[E l—‘lq = H| = F; k = crystal momentum.

,:.

r=vwv, =dek)/dk; elk) = bamnd energy .

If no collision oceuars, the number of particles is conserved, ie

flr+vdt, k +fdt t +dt) = f(r,k.t).

dt —df af L?'JI"
i VatrmtaT
with collisions: i ar af af af
i
g~ gt =Y e Y E Gt o
= '[rj‘r]ﬁrh [%]_fmﬁi . % -+ Boltzmann's equation.
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= i = {r f.l-d'rfj" + (5 fJ'fm!n' + ff f Jentt

ot

total rate of change of distribution at (u. r. £). At steady state, :—JJ-:L = (L



Scattering rate

o7
(ar

Jeott = — (out-scattering rate) + (in-scattering rate)

= — Z fi (1 — fir) Sk + z fio (L — fi) Skrer-
X T

Sk = scattering rate from state k to state k'. e.g.
(i) Electron-LA phonon scattering

S};};I = 2?1'|4'1"1':I|-2[{E(Ek — € — I'_,u_.'q)(_-"'"fii -+ J.) +1§(Ek — £t +uq)_-"'ﬂi]q=k_kr

My_p?(2Ny_p 4+ 1)d(ex — ) (ignore w, ). (nearly elastic scattering)

= 27

(ii) Electron-LO phonon scattering (inelastic )
Sk = 2| My _ |2 [0 (ex — €3 — wio)(Ng +1) + (e — epr +wp )Ny
(iii ) Electron-impurity scattering (elastic )
Skir = 21| < k| Vi K > %0 (e — exr),
where V' is the impurity potential. Microscopic reversibility ( for elastic scattering)

Skkr = Skrk-



Linearized Boltzmann equation: (valid in low-field case)
Use Sprr = S (elastic scattering ), We have

(gf_f)mu = /(fk - fk’)skk'ds’k, - /[(fk - ff?) - (fk’ - f;’,)]ﬂkk;dak’

since fO, = f0 = [eflex—) 171,
Assume a constant temperature gradient and electrostatic field,
of _ 3& af _ ofi
- —VT, F- —eE - v —
YEior TR aT kT " 0
afy 5f
= Vi VT — eE - v =& Z[ (fe — £o) — (fr — fo )] S

aT
For spherical energy band, ¢, = e(k) = E(k’)

/ de T
=,*-k= k,\-"k=a—l:=?}kk.

-~

Try the solution fi — f} =al(k)-k

and a(k) = —?k({;“;f VT — ngﬂ
K

) ( ] -+« pxact solution.



Relaxation-time approximation

9f
ot

_ fdﬂk’:;(k, 0')(1 — cost).

(57 )eott =—(fic — fE)/T (k)

In the absence of field and wwh constant relaxation time., 7. we have

0 fi

o) —— (= g0/

(

with solution
fi() = £ + (fe(0) = e

In the low field limit, we have

d af
() =B - (- o
or (let g = fr — f ) .
d afy
(;:)— cE - Vk%—gk/'r.
with solution 5
gr(t) =€eE - v — e k1 —e .

€k



DC conductivity

Consider the case VI =0 and E = constant .

G = 10+ B vy ()

{?F;;
d*k d*k ka
Jf,[— _F/-l ( —F ZE /-1""q Uy k) (k)( ﬂFk ZJ“.T
FI
o5 =€’ f {I—;:?;i(k)?;j(k)(—{;ijr(kj -++ conductivity tensor
ST €r

afy _ Of0ex _ Off
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So _\r(k ]qua tegration by part
So, gi; =e T(kr) 175 OF, (v; (k))f (integration by parts)

d*k
=er(ky) [ T

= [ner (kg )/m"]d;; (for spherical nondegenerate bands).

Good approx. for metals NOTE: v(k)

fn( ) ( ) effective mass tensor



Electron mobility

e Temperature dependence of electron mohility in semiconductors:

3= ey <v>=-¢ [ Cerluin - B) 2 p(E
=—ENpy <V >=—¢ HT( )Vk(Vk' ){E ( k)
(in effective-mass approximation )
2¢e dk af° nge?
= [_Em* /ET (ke a]E = < 1> E =0E = enguE.

3 0 - 3 0
< T >= 2 fd i [:k)Ek(—af ) = : [d kr(k)?;;(k)(—af ) -+ relaxation time

_T —_—] - —
3ng J 4n3 de. " mg J 4Am? v,
o =nge’ <71 > /m* --- DC conductivity ; st =€ <7 > /m"* --- mobility
< 1> oT" for non-degenerate electron gas (T > 100K ).

r=-3/2,-1/2,0,3/2 for LA-deformation potential, piezoelectric, neutral impurity, and ionized
Impurity scattering, respectively.



AC conductivity

Use the relaxation-time approximation:

af af _f-r°
AR i (5

Define f = fY + g(t) and linearize to get

290} eE(t)- ‘i;i = f((z

Assign €' dependence to g(t) and E(t)

: 1 B afo
= [iw + W]g(wj = —pE(wja_k_
So, jlw) =¢* f f;: [fw + L]_lvkvk -E(w)(— gfkj
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NOTE: as w — oo, we have
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Electron conduction in metals

Electron distribution is degenerate in metals,

afr
——— (€ — €p
9, ( )
_ 2 [ d%k df°
So, 0 =nge’ < 7> /mwith <t ::-=—/—T ke (— =—) = 7(ep).
o =nel <> 3 [ bl 5o =)
Resistivity, p = o' = ¥; p; (from various mechanisms) ... Mathiessen’s rule. [since 77! =

1

% il

(i) impurity scatterings: 7(ep ) is independent of T, so is p.
(i) Acoustic-phonon deformation:

T(ep) ' xT = poe x T (for T < 0p)

: . . . kT .
For T < ©p, we cannot use the approximation N, = -2— - L. In this case, we cannot use

i
the relaxation-time approximation since Spy # S when N, and (N, + 1) are substantially
different. Here, we have to consider large-angle scattering with ¢ = |k — K/| kp; hence the

maximum acoustic phonon frequency is close to ©p.



Electron motion in B field

o 1 . . . -
— < A==« A >+ driving term ... equation of motion due to collision.

i
fad .

et A=v= —<v>=—2 v >+—F ... external force
it T m

F = rlE - l_-:: L Ul xH| v.. Lorentz force.

Let B = M.z
= | — 1—]4 = = F E|'!‘I,I
i T r
o 1 i)
m[E .::“!"_ el E; -:_U:I

In steady state £ < v = =1

it
T «r e
= Uy = = _'EJ' = WeTlig, Uy = = _'E!-' -+ We Ty, Uy = — —H].E:
m ’ m T
er
vy =——FE — v xJd,.,
i

where w. = e} fme is the "cyclotron frequency”™.
Let E = E; + E;, where E ||vand E; 1 v

T
m

ET .
=v =——FE and —E, = —7v x .
T



Hall Effect

For an applied E field along x, we expect v, = —=-F,.
3
ne-T , .
Current .J, = n(—e)v, = WE_E independent of sign of charge .
m m el3 TelB
E=(—)vxd. =(—)v (—)g =—(—)E.i.
e = (v xde = () (—)) = —(——)Ea
F, F, 1 :
Define Ry = —2 m Y — —__ ... Hall coefficient.

J.B N (?IEETB)E_E = " nec

which depends on the sign of charge.

E B ,
P = — = — ——is the Hall resistance.
g nec



