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HW assignment: Ch. 7, Problem 12.



K-p theory

e .

[~ 5+ U(r)tenk(r) = Eulk)hui(r). Yui(r) = e ua(r)

Hyuglr) = £ (k)un(r),
W — 1, .

where Hy = —(—iV+ k) +U(r) = —(p + 26k - p+ &) + U(r)
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= [+ U(0) + —(k - p)Juak(r) = [Ea(k) — - —TJutax(r)

.
= [Hy+ —{k - plui(r) = &'u(k)upn(r)

Lk - p)is treated as a perturbation,

i

* Zeroth-order solutions are: w,,(r) with energies £,(0),

Expansion: w,,(r) = Y O (k) w,,[r)

"

) h
= E,{ [E(0) — E(K) ]+ < gl a{k cp) g = O (K] = 0.




Full zone k-p theory

[Cardona & Pollak, Phys. Rev. 142 530 (1966)]

Keep sufficiently large number of w,, [ e.g. lowest 15 states corresponding to
k= (000}, 8(111)’%, and 6(200)%].

e Comments:

Solutions obtained are good for k throughtout the entire Brillouin zone,
Matrix elements < | pliag > can be computed from pseudopotential method
or taken from experimental data (cyclotron resonance),

When the group theory (svmmetry) is used, only the independent matrix
elements need to be determined for covalent material (51,Ge,0-5n ete. ).

For I1I-V materials, one needs additional six parameters. The band strue-
tures do not have correct periodicity (not valid in repeated zone scheme)
Most accurate near the zone center, predicting best effective masses among
all the models., Near the zone-center, band structures can be caleulated by

second-order perturbation theory,




| E. 0. Kane, J. Phys. Chem. Sol. 1, (1960)]:
A. Non-degenerate case: [e.g. conduction band of most semiconductors (s-like

band)]

s < Uug| K - Pl >
+ < unﬂl_{k p}lunﬂ =+ E I nlrrl plu‘* b |

Eu(k) = Eu(0) + 5 win  En(0) = Ey(0)

[ NOTE: < HHH| ik : P'|Hr:|] == b}r E:,F]l‘l]f]lEt-l'}"]
ﬁzkl

= n“] A E{Umt}tlk k
, B P
where {m—,}:; = Eﬁu + 2 "E: E,(0) — E,(0)

is called the effective-mass tensor.

n.'

B =< uﬂﬂlf-‘i Iun‘l]- > .

For cublic crystals (including se, bee, fee, diamond, and zincblende), we have

=

E.I'i{k} = E!![u]l + Dt

Here the effective mass tensor is reduced to a scalar.




Meaning of the effective mass

Bare electron mass m, :

Effective mass

€/ ms-ff)ij ::Um)(% i2pi P /(Eg”b))

SVAVAVAVA

Isotropic cases

My

. . (mc,v)eff = 2
For electrons in conduction band + 1+ 2<c|p|lv>

For electrons in valence band — / m,E,
Effective mass can be measured
by cycltron resonance experiment



Band with degenerated states

* |solated atom Si 3s°3p°

e Semiconductor 3sp®

* In the presence of spin — orbital interaction only the total angular
« Momentum,i.e. the sum of the orkital and spin angular momentum,
* is aconserved quantity

élnrjc:2

P v+ LKpe

2m, m, Amgc?

(E, (k) —7%k?/2m,)u, (k,r) «—— Time reversal symmetry

[H= ﬁ+V )+ - W)X Py (kN =B, (s (k)

2

[VV (r)x (p+K)]-o}u, (k1) =



B. Degenerate case: [e.g. valence bands of semiconudcetors]
Let |u.(0) > denote the J-fold degenerate states at the zone center (I" point).
Ignore the interactions among |u.(0) >"s first. The first-order correction to
the perturbed state due coupling to other states is given by

1, e . plie,,
(1) >= s (0) >+ 3 S B T (0) >

Thus, the first-order correction to the energy for states |u, >s are given
by diagonalizing the perturbed matrix within the J-fold basis (degenerate

perturbation theory)

0|2k -l (0) >< 10(0)| 2k - plu,.(0) >
HY = E,(0)4,,. = w0l o -
e #I:[]] o + HE.II EJ-":{]]I o Ell"{n}

For cubic crystals with p-like valence bands (e.g. Si, Ge, GaAs, InAs,...}, we
have
Ak2 + BI[kE + k%) Chky Ok ks
HY = — Ak2 + B(k2 + k2) Che k- ;
- - Ak 4 E‘[.ﬁ:i + k)
where A, B,C are three band parameters, which are determined experimen-

tally (typically via cyclotron resonance measurements ).



Valence bands with spin-orbit interaction

| -

« J=3/2 @T
|3/2+3/2>—|mL—i1{ } /
|3/2,i1/2>=%[\/§|mL o{} +m =

v

<—|—> «—

|1/2,+1/2 >=%[— |m = o,{ﬂ >+/2|m, = ﬂ{ﬂ >]

Kane’'s model X
Luttinger-Kohn’s model v

N
E,
N



The valence bands become G-fold, since J = 1&1,/2 =1,/2,3/2. The top four
valence bands are given by |3/2,3/2 >= —;]_;I“,T = iy =) T, 13/2,1/2 ==
_?:'E“I > +ily =)} 2|z =1, 13/2.-1/2 == ‘E{|z = —ily =) T 42|z =]
13/2,-3/2 >= Jylla > —ily >) }.

(4, © wm o )

o _ L LT AL 0 M
2m | A+ 0 oA —L |
\ n M* —L* AL J
where

As = (k2 + D)+ (1 F 2)kE,
L= -2 3K ks,

M= —v37K " + (72 — vs)k.k,

K* = (ks £ik,),

Y. Te. ¥y are called " Luttinger parameters” and they are related to A, B C
by m = A+ B)ve = f{A - B), and 1y = ;C.



Degenerate Valence Bands

Semi A(eV)
e Quantum well 3 0.044
Ge 0.29
GaAs 0.35
Multi-subbands INAS 0.41
N 082
» Forvalence band NP 0.14
, , GaP 0.094
BUIk _h 2 h 2
EnK)=——01-2n)K=—"-K
h zn) 1 2 Z‘rﬁh :‘;]h
L 2 I .
E(k)=——(+2n)k =—-K S I
A h Zn) 1 2 ZTlil
2
(222 % V(e () =Ecn(2); m=hh,lh

2 0zm; 0z



Effective bond-orbital M odd
[Y.C.Chang, PRB 37, 8215 (1988)]

(R,s |H |R',s)=Ebg g +Edp g+

and

{R,S IH |Rrﬂ}=E:xﬁR‘—R,TT:: ,

where | R,s) denote an s-like orbital located at R. Tak-
ing the Taylor expansion over k and omitting terms
higher than the second order in k, we obtain the Hamil-
tonian in the sp? basis



Taking the Taylor expansion over k and omitting terms higher than the second order, we obtain

E,~hkI-Mk*  —Ask.k, — sk, k,
H(k)= —hskok,  E,—hik] =Rk’ —Ask,k, ,
— Ak k. —hak.k.  E.—hkI—A.k?

where
E,=E,+8E,, ,
My=\E,—E,)a’/2,
A,=(3E, —E,)a’/2,

_ 2
hiy=Eg a".

(3)

Comparing Hik) with the k-p Hamiltonian for the
valence bands, we have

{L —M_:I:A.l, M=l1j N=Jl.3 ¥ {4}

where L, M, and N are k-p band parameters defined as A, B, C.



Tayler expansion up to k2

E.—E a%? i4E, ak, 4, ak, i4E, ak,
. ~i4E ak,  E,—Mkl-Ak? ~hok k, — Ak, k,

~i4E, ak, ~hskk, E,— Mk} -k} Ak, k,

—i4E,,ak, ~ Ak k, ~hek,k, E,—hkI-Ak?




TABLE II. Relations between bond-orbital parameters and
k-p parameters. R, =#/2mgya®, X, =4 eV.

VBM CVBM
El =E,(12y,Ry—X,, /8)/32
E,, =6v:R, E, =6y R,—16EL /E,

E.=(y,+47,)Ry E=v\Ro—16EL/(3E,)+ X, /24
E.=ly,—8y,)Ry E.=E,. +X,/8
E,=E,—12y\Ry E,=E,—12E +Xy/2

2 1

Ey=— muﬂnﬂ-mﬂi +

/3




ENERGY ( eV )
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Band structures obtained with

EBOM versus K.p method
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Band structures of superlattices

e General Considerations:

a. A superlattice consists of two (or more) kinds of bulk materials [e.g. GaAs-AlAs super-
lattice], stacked in layers along a given directions (called growth direction)

b. A superlattice has well-defined unit cell and periodicity e.g. a unit cell of (M, N) GaAs
AlAs superlattice.

periodicity = (M + N)a" = d in the growth direction (z) and a' in the z, y directions.

c. Electronic States can be labelled by crystal wave vectors k = (k|,q) [cf: k = (k. k.) for

bulk]

d. Bloch states of the superlattice are denoted by ), (r ), where n = band index, k = (k| ¢).

Rox(r) ... Bloch theorem,

Yuic(r + R) = c*

where R is any lattice vector of the superlattice. Let R = dz (along the growth direction

?-.l"‘nk{ r ) .

then ¥, (r + dz) = €

e. Concept of zone-folding (e.g. d = 4a').



e  Quantum wells

*  Quantum wires

¢ Quantum dots

Envelope Function Approximation

(Single electron picture)

W(r) — gn (Z)ei(kxX+kyY)uo(k ~ O, r) /l Z

v (©)=c, 0, k~0r) |2

(1) =6,(Xsn(Y)s,(Qu,(k=Qr)

i :
gn,m,l (X’ y1 Z) ‘




e Envelope-function Approach: (Ideal for Hat-band superlattices)

Procedures:

a. Find general solutions to the Shrodinger equation in each flat-band region
HYh4 = Eyro = A or B.

Note: H'”) in each region is the same as in bulk ma,terigrf o, apart from a constant shift in

energy (V). The solution is known for each guantum number, k
HO6 = ED (k)6 k = (ki q).

For each fixed energy, £ and in-plane wave vector, k|, there are finite number of solutions

(in general copmlex) for &,, which satisfy
E = E(‘”[k”, k.)+ Vs, k. = complex,

V5, 1s called the band offset for material ¢ . The solution can be depicted as the "complex
band structure” Omne can use different theoretical methods to describe the complex band
structure, e.g., tight-binding or k- p methods.[Y. C. Chang and J. N. Schulman, Phys. Rev.

B25, 3975-86 (1982)]



The description must be accurate near the energy of interest. For most applications, the
energy of interest is near the conduction-band minimum or valence-band maximum of the
smaller-gap material. So, the k-p approach is adequate. If the tight-binding method is used,
the inferaction parameters must be selected so that the band structure is accurate near band

extrema ( or k = 0 for direct semiconductors). The number of complex k., solutions depends

fE“F'

on which method is used.

Example: k - p(effective-mass) method for conduction band

_ ?-2 ?-2
EO(k) = —k = —— (i} + £2).
2m? 2m?
To find complex roots, let
2
E-V,= i (kﬁ + k%),
2mo

So, k, = +/2m3(E — V,) /R — k2.

Denote the complex k. roots by Fc}g’] .i=1,....p and the corresponding Bloch states by &LT

yi?
then

P
=) _A&J:';.-"JLT' in each region o,

52
i=1



where AEU’] are coefficients to be determined by matching boundary conditions.

* Example: In the effective-mass approximation

= :I:\/Q-m.;[E — V,)/Ii (assume ky = 0) = +k,; 0 = A, B.

AEAJ'L'L‘;;A + A%A:'-L-i'_;u in region A

SOF L‘ = {"F-
A':lma'-*kﬂ + Aéﬂjﬂﬂ_kﬁ in region B
ALY )
Note: q.-"JLi:' = ¢ 2l periodic part.
Tl , (A'ilm ikaz 4 »ﬁlm _”‘Az) = Fyl(z )uD W in region A
len, 1 =
[}1':13’]8““5"’ fil"B e~thez)ld) = Fy(z )uﬂm in region B

Fi(z) and Fp(z) are called envelope functions. For convenience, rewrite

Fylz)=Ajcoskaz + Aysinkyz, Fplz) = Bycoskp(z —14)+ Basinkp(z —14).



b, Find relations between coethcients {_4_,'91'} through boundary conditions (B.C.):
(1) Effective-mass theory:
B.C. for ¥": both ¥ and &,v' continuous

B.C. for F: Both F(z) and —=1=3. F{z) continuous.

e E)

Two boundary conditions give rise to a 2 x 2 matrix equation

A
By Ay
=1tpga
Ba As

for interface 1.

* Exercise: Show that

cos kal sin k4, ki m
tpa = it ] e= (AR
—E “1n A'I.J,.Ili,q —El'l;h.ﬁ.‘,{lr_.t

gy ] .-"11 E| _-"11
Similarly, = tap = tagtpa
( Ay ) By Ay

T = (t45)(tg) is called the "transfer matrix”. It has two eigenvalues e**%, Thus, we have

TriT)=2cosqd = 2coskalgcoskplp — (£ + 5_1] sinkalasinkplp.



Local orbital basis

e Transfer matrix approach (applicable for any superlattice)
Example: sawtooth superlattice.

Using tight-binding method, we write superlattice Bloch states as

V=Y e F()ky;la' + Ld;a > [I=1,...,N]
L low
0=(H-Epw=Y ™Y F,()(H - E)|k;la' + Ld; o > .
L Iy

Multiplying < [; a'| from the left gives

YAFR(1+1) <L |H|l+ o> + < l;a|H — Ell;a > Fy()+ < L' |H|l - La > Fy(l— 1) >=0

[}

= F(l+1) = —[HP O] {HO () F(1) + HO)F(1 - 1),

where H3)(1) =< I;o/|H|l+; a >, and HO\ (1) =< L, o/ |H|la > —Ed ey



[ Fa+ G F(l)
B F(l) F(l-1),

_[HHJ(E)]—lH(DJ(g] _[H(H[”]—lH(—J(g) )

where t([) =
( 1 0

Repeat N times...

_(Fv+n ) (P
TV oreyy ] Y R0

where Ty =t(N)EH(N — 1)---#(2)¢(1).

Solve |T'N(E)— €1 =0 for E(q).



Superlattice bands obtained with EBOM

InAs-GaSb Superlattice
(30,201
Gaks- Al Ga, As Superiattice / J
=
' = osl i
=
) s HH | |
: | "___,_—-'"’_ LHI i_\“‘
1
0.2F ~
/— LHZ
_D,Zhﬁrw
AL i P R g _0_4W-\?\1 F- TR J
O g e BIG0 GE 102 0F N T 2
[too] [oog] i) [¢o0] [oo¢] [coi]
Wove Vecks K [ e/ 28al Wave Vector ,k (w/10a)

FIG. 2 Valencesubband structures of a (30,200 GaAs  FIG. 3. Subband structures of a (10,10) InAs-GaSb superlat-
Alg Gty oAS superlattice obtained in ihe VEM. tice obtained in the CVBM.



Self assembled quantum dots

Incident light

GaAs Area density
Infrared detector 011 2
Lattice mismatch 7% Laser 10~ /cm



Physical effects in QD

Quantum confinement (size effect)
Selection rule (light polarization)
Discrete energy levels (O-d density of states)

Strong Coulomb interaction (Coulomb blockade)
Strong €l ectron correlation (many-body effect)
A—

— Artificial atom



PL of INAS/GaAs self-assembled QDs

Wt 25MLaotinos - - - - ” {  Stranski-Krastanov growth
S 1AMAAHOBM. —— 1
-l '_ INAS
S| T=5&K :
S , 23 MeV /
o[ |, =9Wam — -
> Ao =5145M A 7
m i ) , 9 J
= £ ‘
B 100 120 GaAs

Z. Chen and A. Madhukar (USC)



(QWIP)

humhu_ CONDUCTION BAND DIAGRAM

CROSS
SECTION TEM

http://qwip.jpl.nasa.gov/tutorial .html



(Infrared detector)
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(QWIP)

FIRST DEMONSTRATION ok
OF 15 MICRON 128 X 128 ¥ FIRST DEMONSTRATION :
OWIF CAMERA weY FIRET DEMONSTRATION OF 88 AND 1445 mm E40x512 pixned

n =i p OF PALMCORDER DUAL BAND CMIF CAMERS Gats\t Ga handhelkd
= B BIZE CHIF CAMERA

CEITHHE
FIRET DEMSONETRATION
OF HAMD-HELD CAMERA

E40 w 4BE ILWIR

ETRV-1D CWIF Exparimant
OWIF CAMERA

i
First CWIP Arvay Inko Space [l

19494 1996 1998 19499 2000 2001 2002

http://qwip.jpl.nasa.gov/tutorial .html



Scherr[lgt&%s of d(R[M P test t (%tsrg)?tures

n+ GaAs contact layer

Doping: Balance between PC & Dark Current

n-i(MQD)-n
n-n(MQD)-n IR Light
e_ [
Bias: 1 +
5 layers of ‘ -

PIG 3ML InAs QDs:
(2ML + At + 1ML)

with 150ML GaAs/AlGaAs spacers

n+ GaAs contact layer

— Al.ssGaJ?AS\

n+ GaAs contact layer

n+ GaAs /ﬂ_ﬂ_. ._ﬂ\ n+ GaAs
No bias




Photovoltaic Effect

0.018 . . . . . .
0016 | (GAAS Bias=0V
0.014 | 77K

Photocurrent (nA)

Wavelength (um)

 Photovoltaic Effect is due to asymmetric potential of QDs
» Potentia for normal-incidence photovoltaic MIR Photodetector



Opticagardsstructural Characterizatigna@t LLDIPs

e, M el e il

ol o A & R

Energies of transitions

(from PL/PLE data):
65meV, 89meV
139meV, 195meV

1.170pm
1.161pm
>EmeV 36meV
— AlGaAs GaAs
S
8
2
‘»
C
]
£
i 8500A excitation
~50W/cm?, 78K
9000 10600 11600 12600

Wavelength (?

PLE

Log of Intensity (a.u.)

1.131eV

1.205eV
1.066eV

1.261eV

1.155eV

T=78K

9000

10000 11000 12000
Wavelength (?

13000



I

Microscopic modeling

™

[S. Sun,Y. C. Chang, PRB 62, 13631 (2000)]
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Valenceforcefield (VFF) Model

1< 3
V = 424% (di12 _dO'J) /d(f”

J

T ZZ ﬂjk(d d|k+dO|JdO|k/3) /dOIJdOI

i jik

i labels atom positions ‘ d., d,
] , kK label nearest-neighbors of |

d;; = bond length joining sitesi and |

dojj IS the corresponding equilibrium length
0iij= bond stretching constants

d;x= bond bending constants 4
We take dijkz = dijdik



Effective bond-orbital M odel
[Y.C.Chang, PRB 37, 8215 (1988)]

HM.(R): Es .+

P " a,a
3 eiR.f{Exyrara' + [(EXX - Exy)rj + Ezz(l— rj)]éa’a

Strain Hamiltonian

~ AV, + D, V3de,, J3de,,
H,=| +/3de, ~ AV, +D, V3de,,
J3de,, J3de,, ~ AV, + D,
~

&ij= (eij*&ji)/2 6

AV y=(ai+az)(exxteyytezy)
D1=b(28xx-8yy-822)
D,=b(2eyy-exx-€77)
D3=b(2&,,-exx-Eyy) 4
a;, ap, b, d = deformation potentials.



Strain Potential
Along Line A and B of Dot 1

* Fig.(a):
strain potential
along line A

* Fig.(b):
strain potential
alongline B

N

* Band offset:
CB: 0.833eV
VB: 0.260eV

o
w

o

[Eny

(6]
T

-0.3 [~

strain potentail (ev)
o
I

""""

>< -

strain potential (ev)




Strain Distribution Along [001]
of Dot 1 and Dot 2

* Hydrostatic Strain :

Dot 1: 12 \ |
Do) S
® Biaxial Strain: ’\g 6
o
Dot 1l ------ Nl 0o -
Dot 2: — — — _% |
s 6
*[001] isgrowth @ /
direction 12 \/ _
* Dot 1: 0-625A 18 | | ,
Dot 2: 0-50A -30 0 30 60 90



Ground Transition Energy Varying With
Dot Height (comparing to Experiment)

Dot base length 200A

Energy (eV)

1.24
1.20
1.16
1.12
1.08
1.04

X

- @ - Theory
\'e & Experiment

N .
° .

\0

\Q.\\
\.\‘\.
<8

20

Island height (A)




PL/PLE Characterization: Electronic Structure

7L INAs/GaAs QDs
g C PL 3ML PIG
Sk T=7K

L 2
S | e c~5000W/cm
2t Epyc=2.41eV
gr :
£r :
B étrolngést tlran't:itilons'
SIPLE v
5l :
=1
é L T weaker transitions
St .
= +L O phonon transition
| I 1 I 1 I 1 I 1 I 1 I 1 I
095 100 1.05 110 1.15 1.20 1.25 1.30

Energy (eV)
Ground state at 1.062eV

Excited states:
Srongest at 1.147eV and 1.229%¢V
Weaker at 1.121eV and 1.197eV

—

=

GaAs : QD

~310+50meV

E.T

1.52eV

Y

E Y

WL
EY Tx—

1.147ev
1.229¢V

GaAs

3 50meV
2 850meV

Hi2 26meV

H3" 32meV
H43me

~150+50meV



| ntra-band Transitions

wL ~310+50meV

Photocurrent (nA)
o o o
" " @

o
o

L

~310+50meV
== —_

T T T T T T T EC Ee EC
Normal incidence 162 meV Al WL
| Bias: -0.5V 7.62um 1 E, . . e
@77K {  50mev :
| | 59meV E2 bel 4 '_A_"
1 A | ]
| : ‘
> P!
< SIS >>0 >
gggse !
SIS st 33 3
- S g3
26meV Hl,Z ' - A
32meV H3 v
4 | A —
T T T T T T T T -_ 1 WL —1—
2500 2000 1500 1000 E, En  ~150x50meV

Wavenumber (cm™)

A. Madhkar (USC)



| ntra-band Transitions

Table 4 Inter-sub band transition matrix elements of ground electron state to upper three
electron states, <¢1,C\T\¢i,c>2- B=200A, h=80A.

Symmetry state i X y z
Al #2 (0.111) 0 0 0.2
#3 (0.123) 0 0 57
#4 (0.197) 0 0 201
A2 #2 (0.106) 0 0 28.5
#3 (0.114) 0 0 0
B1,B2 #2 (0.109) 0 0 15
#3 (0.138) 0 0 42
#4 (0.201) 0 0 14
Al-Bln #1 (0.062) 446 446 0
#2 (0.162) 0.2 0.2 0
#3 (0.218) 0.4 0.4 0
#2(0.049) 536 536 0
B1-Aln #3(0.061) 659 659 0
#4(0.135) 376 376 0
#5(0.161) 10.2 10.2 0




Transfer-matrix approach

Energy and wave functions computed using a stabilized
transfer matrix technique by dividing the system into
many slices along growth direction.

Envelope function approximation with energy-dependent
effective mass is used.

Effective-mass Hamiltonian in k-sapce:
[(k2+k,2)Im(E)+3,2Im(E)-E]F(k) +

% VKK )+ (K KOIF(K)=0
IS solved via plane-wave expansion in each slice.

14-band k-p effects included perturbatively in optical
matrix elements calculation

Dopant effects incorporated as screened Coulomb
potential

The technigue applies to quantum wells and quantum
dots (or any 2D periodic nanostructures)



Charge densities of low-lying states in lens-shaped QD

s-like px/py like

d-like p, like




