
Band structures
1. k·p theory
2. Kohn-Luttinger theory
3. Effective bond-orbital model (EBOM)
4. Band structures of superlattices
5. Transfer matrix method
6. Quantum dot electronic states

HW assignment: Ch. 7, Problem 12.



k·p theory



Full zone k·p theory





Meaning of the effective mass

• Bare electron mass

• Effective mass

• For electrons in conduction band +
• For electrons in valence band –
• Effective mass can be measured

by cycltron resonance experiment
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Band with degenerated states

• Isolated atom Si 
• Semiconductor
• In the presence of spin – orbital interaction only the total angular
• Momentum,i.e. the sum of the orbital and spin angular momentum,
• is a conserved quantity.
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Valence bands with spin-orbit interaction

• J=3/2

• J=1/2
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Degenerate Valence Bands

• Quantum well

• For valence band
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Effective bond-orbital Model
[Y.C.Chang, PRB 37, 8215 (1988)]
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as A, B, C.



Tayler expansion up to k2





Band structures obtained with 
EBOM versus k.p method



Band structures of superlattices



Envelope Function Approximation

• Quantum wells

• Quantum wires

• Quantum dots
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(Single electron picture)











Local orbital basis





Superlattice bands obtained with EBOM



Self assembled quantum dots

GaAs

InAs

Wetting layer

Lattice mismatch 7%

Incident light

Infrared detector
Laser

Area density
211 /10 cm



Physical effects in QD
Quantum confinement (size effect)

Selection rule (light polarization)

Discrete energy levels (0-d density of states)

Strong Coulomb interaction (Coulomb blockade)

Strong electron correlation (many-body effect)

Artificial atom 
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Z. Chen and A. Madhukar (USC)
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Stranski-Krastanov growth



量子井紅外線偵測器(QWIP)

http://qwip.jpl.nasa.gov/tutorial.html



紅外線偵測器 (Infrared detector)



http://qwip.jpl.nasa.gov/tutorial.html

量子井紅外線偵測器 (QWIP)



Schematics of QDIP test structures

5 layers of
PIG 3ML InAs QDs:
(2ML + ∆t + 1ML)

with 150ML GaAs/AlGaAs spacers

SI GaAs substrate

GaAs

GaAs
n+ GaAs contact layer

n+ GaAs contact layer

Al.33Ga.77As

Doping: Balance between PC & Dark Current
n-i(MQD)-n
n-n(MQD)-n

SI GaAs substrate

GaAs

GaAs
n+ GaAs contact layer

n+ GaAs contact layer

IR Light

Bias:
e-

n+ GaAs

No bias
n+ GaAs

[Z. Chen and A. Madhukar (USC)]



Photovoltaic Effect
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• Photovoltaic Effect is due to asymmetric potential of QDs
• Potential for normal-incidence photovoltaic MIR Photodetector



Optical and Structural Characterization of QDIPs
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Microscopic modeling

x (0,0,1)

y (0,1,0)σv’ σv

[S. Sun,Y. C. Chang, PRB 62, 13631 (2000)]



Valence force field (VFF) Model
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i labels atom positions  
j , k label nearest-neighbors of i  
dij = bond length joining sites i and j  
d0,ij is the corresponding equilibrium length 
αij= bond stretching constants 
d ijk= bond bending constants  
We take dijk

2 = dijdik 
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Effective bond-orbital Model
[Y.C.Chang, PRB 37, 8215 (1988)]
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Strain Potential 
Along Line A and B of Dot 1

• Fig.(a):
strain potential 
along line A

• Fig.(b):
strain potential 
along line B
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Strain Distribution Along [001]
of Dot 1 and Dot 2
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Dot 1: 
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• Biaxial Strain:
Dot 1: 
Dot 2: 

• [001] is growth 
direction

• Dot 1: 0-62.5 A
Dot 2: 0-50A



Ground Transition Energy Varying With 
Dot Height (comparing to Experiment)

Dot base length 200Å
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Ground state at 1.062eV
Excited states:

Strongest at 1.147eV and 1.229eV
Weaker at 1.121eV and 1.197eV
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Intra-band Transitions

A. Madhkar (USC)



Table  4       Inter-sub band  transition matrix elements of ground electron state to upper three 
electron states, φ φ1

2

, ,c i crv .  B=200A, h=80A.  
 

Symmetry        state i x y z 
 

A1 
 

 
#2 (0.111) 
#3 (0.123) 
#4 (0.197) 

 
0 
0 

0 

 
0 
0 

0 

 
0.2 

57 
201 

 
A2 

 

 
#2 (0.106) 
#3 (0.114) 

 

 
0 
0 

 

 
0 
0 

 

 
28.5 

0 
 

 
B1,B2 

 

 
#2 (0.109) 
#3 (0.138) 

   #4 (0.201) 

 
0 
0 

0 

 
0 
0 

0 

 
15 

42 
14 

 
  A1-B1n 

 

 
#1 (0.062) 
#2 (0.162) 
#3 (0.218) 

 
446 
0.2 

0.4 

 
446 
0.2 

0.4 

 
0 

0 
0 

 
B1-A1n 

#2(0.049) 
#3(0.061) 
#4(0.135) 
#5(0.161) 

536 
659 
376 
10.2 

536 
659 
376 
10.2 

0 
0 
0 
0 

 

Intra-band Transitions



Transfer-matrix approach
• Energy and wave functions computed using a stabilized 

transfer matrix technique by dividing the system into 
many slices along growth direction.

• Envelope function approximation with energy-dependent 
effective mass is used.

• Effective-mass Hamiltonian in k-sapce:
[(kx

2+ky
2 )/mt(E)+∂z

2/ml(E)-E]F(k) + 
Σk’[V(k,k’)+Vimp(k,k’)]F(k’)=0

is solved via plane-wave expansion in each slice.
• 14-band k·p effects included perturbatively in optical 

matrix elements calculation
• Dopant effects incorporated as screened Coulomb 

potential
• The technique applies to quantum wells and quantum 

dots (or any 2D periodic nanostructures)



Charge densities of low-lying states in lens-shaped QD

s-like

d-like

px/py like

pz like


