
Electronic States

1. Bloch Theorem
2. Nearly free-electron model
3. Kronig-Penny Model
4. Plane-wave expansion (pseudopotential method)
5. Tight-binding approximation
6. k·p theory

HW assignment: Ch. 7, Problems 4, 5, and 7.



Bloch Theorem
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Periodic potential
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Periodic structure

See, Kittel page 32



Three dimensional lattice

• 3D
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Translational symmetry

• Lattice translation as a discrete symmetry operation
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Proof of Bloch Theorem



Born von Karmon Boundary Condition



Properties of Translation operator

• Unitary
•
• Not Hermitian
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Character: χn= wn = e iФn

WN = 1

Ф = s(2 π /N)
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Symmetry of crystal

• Bloch theorem
• To describe electron in a symmetry crystal, not in local atom

• Dislocation

Finite size system
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• Lattice vector
• Primitive vectors
• Periodic potential 
• Electron wave function 
• Translation operator 

• Hamiltonian (1d case)

• Compatible observables

• not a Hermitian operator, 
the eigenvalue is complex
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Summary



Empty lattice band structure



Extend zone & Reduced zone



Nearly free electron model





Kronig-Penny Model





Plane-wave expansion



KP Model with plane-wave expansion



Empirical Pseudopotential method



For zincblende materials



parameters

J. R. Chelikowsky and M. L. Cohen, Nonlocal pseudopotential
calculations for the electronic structure of eleven diamond and 
zinc-blende semiconductors, Phys. Rev. B 14, 556 (1976)



Tight-binding model
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Core orbitals vs. valence orbitals
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Coupling between neighboring orbitals

• 2s-orbital )()()](
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Energy level versus k

• Renormalized atomic energy level
• Overlap integral
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Band formation in solids

Energy levels form a continuous energy band 
as the overlap integral increasea from  zero
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Tight-binding method
Linear combination of atomic orbitals (LCAO):





Comments



One-band TB model



Bloch’s function

The wave function           ,which is an eigenket of           , can be
written as a plane wave             times a periodic function with periodicity
a.
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Filling of Bands



Important aspects

• The discrete atomic energy levels become quasi-continuous 
energy resgions, called energy bands, with certain band width.

• There may be energy gaps between different bands.
• Bands may have positive or negative curvature around the 

band extrema.
• In the vicinity of the band extrema one can often makes a 

parabolic approximation

• The states in the bands are filled according to the Pauli
principle, beginning with the lowest states. The last completely
filled band is called valence band. The next higher band is the 
conduction band.
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Insulator, semiconductor, and metal
(a) The conduction band is empty and separated by a large band gap from the 

valence band. This defines an insulator. The electrons can not be 
accelerated in an electric field since no empty states with slightly different 
E(k) are avarilable. Therefore we have no electrical conductivity.

(b) An insulator with a relatively small band gap is called semiconductor.The 
definition of small band gap is somewhat arbitrary, but a good operational 
definition is to say that the band gap should be on the order of or less than 
an optical photon energy. In semiconductors electrons can be moved 
relatively easily from the valence band into the conduction band,e.g., by 
absorption of visible or infrared light.

(c) If the conduction band is partly filled, we have a finite electrical conductivity 
and hence a metal.

Glass Si,Ge Ag,Cu



Fermi surface of metals



Schrödinger equation for periodic part

Bloch theorem

Bloch function
The Schrödinger equation for the crystal electron
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k·p theory



Full zone k·p theory





Meaning of the effective mass

• Bare electron mass

• Effective mass

• For electrons in conduction band +
• For electrons in valence band –
• Effective mass can be measured

by cycltron resonance experiment
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Band with degenerated states

• Isolated atom Si
• Semiconductor
• In the presence of spin – orbital interaction only the total angular
• Momentum,i.e. the sum of the orbital and spin angular momentum,
• is a conserved quantity.
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Degenerate Valence bands

• J=3/2

• J=1/2
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Littinger Model

Hamiltonian for heavy and light hole 
bands in   spherical approximation
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