Electronic States

Bloch Theorem

Nearly free-electron model

Kronig-Penny Model

Plane-wave expansion (pseudopotential method)
Tight-binding approximation

K-p theory
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HW assignment: Ch. 7, Problems 4, 5, and 7.
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Periodic potential

Winger-Seitz cells

o O Real Space

See, Kittel page 32



Three dimensional lattice
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Translational symmetry

e Lattice translation as a discrete symmetry operation

./

«—a —»

L

|

u n,2s

1s 5@( gﬁ( }O( )Q( \G/ B@[
|n—l,S> |na > [n+d, s>
Oois(M)  0() @, (1)



Proof of Bloch Theorem

Eigenstates of an electron in a 3D periodic system (solid) takes the form
Ui (r) = e® "y (r), where uy(r) = uy(r + R) for any lattice vector R.

(P f) Since the system is invariant under a translation by R, we must have
v(r + R) = C(R)y(r),

where C'(R) is a phase factor depending on R.

Similarly, ¢(r + R') = C(R" )y (r)

and (r + R+ R") = C(R + R)¢(r) = C(R')¢(r + R) = C(R)C(R')y(r)
= C(R+R')=C(R)C(R).

In 1D: C(R+ R') = C(R)C(R") with |C(R)| = |C(R")| =1,

which implies C(R) = ¢*# with k& = some real number.

In 3D: We have C(R) = ¢*®*® with any choice of k which becomes a label of
the state. k is the crystal wave vector and k & k + G are equivalent, so we

restrict k in the first Brillonin zone.



Born von Karmon Boundary Condition

Yr(r + L) = k(L)

where L = La; + Mas + Nag = %L =1 or
Lkyay =1 27 = ky, = (2w / Lay)
Mkyas =m -2m = ky, = m(2n/Mas)
Nk,az=n -2m = k, =n(2r/Nas).

In the limit, L. M, N — oo,k is any value in 3D space.



Properties of Translation operator

Unitary Tn+ (na)Tn(na) — eipx(na)e_ipx(na) — 1

Not Hermitian

o i), giy(na)

Cyclic Group of order N:
Character: x ,=w" =g ®n
WN=1

® =s(2m /N)

N=8



Symmetry of crystal

v (r+a)=€e"y(r)

Bloch theorem

To describe electron in a symmetry crystal, not in local atom
N N N N BN BN BN N N N N N N M

 Dislocation
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Summary

 Lattice vector R =Znia1.
« Primitive vectors & !

 Periodic potential Vo(N =V, (r+R)
« Electron wave function w/(r)
« Translation operator T
n
- ~n* d’
« Hamiltonian (1d case) H(X) = o ——5+V(X)
m  dx

 Compatible observables  [H T ]=HT _ -T. H
(HOOT, = T, H )y (%) = 0y (%)

« T not a Hermitian operator, T,(na) = g Px ()
the eigenvalue is complex T () (X)=y (x+a)



Empty lattice band structure

iy r

U(r) = 0, en(k) = -8 = Gn)

2m

Example: simple cubic lattice
2 2
G = (n1,m2,m3) (), k= (e, ) (55), (Nl < 05)

h: on
= 5 ()% [+ n)? + (A2 +n2)* + (As + na)?).

= en(k)



Extend zone & Reduced zone

* Extended zone scheme:

For any k in 3D space, we have a Bloch state ix(r) with energy e = e(k).
There is a one-to-one correspondence between free particle solution (e*¥)
and the Bloch state (¢y(r)).

* Reduced zone scheme:

ik-R

Since the phase factor e i(k+G

and ¢/k+Gn) . R for any reciprocal lattice vector
G,, are the same, we can rename the Bloch state with (k + G,,), Yx,q, ()
by ¥.x(r) and the corresponding energy e(k + G,,) by €,(k),k is restricted in

the 1st BZ.



Nearly free electron model

Consider a 1D solid with weak periodic potential U7{x) Write the Hamil-

tonian of the electron as H = Hy + Ulx).

_ﬁ.‘?
“omtar)

(normalized over sample length L) The free travelling electrons scatter from

Hy = ? with eigenfunctions v (z) = ¢ VL.

the periodic potential U(z) in the same way as the Xray scattering. Thus,
Bragg reflection oceurs when & — ' = G with |k = || = k. In 1D, this

happens only when k& = G/2 = %[H - f'—;"] = n|Z|. This leads to two standing

waves with wave functions

) = (& 4 e~ #T) AL = \ %ms{rm::;fu]l;
W= ifer —ikr ar _"'3 .
=) = (e — e~k (VAL = \ E:H-un{fr.rrr,-’n}.

Thus, the charge density [¢9(x)|* is either peaked at the atomic site or the

interstitial site. An energy gap exists between these two states, since they



experience different effects from the periodic potential.
Ey=A<U >= [|¢" (@)U ()de - [0 (2)]U(z)d.

Assume U(x) takes the form
2N

Ulr) = Upcos(2re/a) = E; = J[r drUpcos(2mz/a) (cos® (7 fa) — sin®(7z/a))

2
== ‘E delycos(2re/a) cos(2rz fa) = Uy

+* A more rigorous treatment is to use the degenerate pnn-urhatinn theory.
Since states [k > and | — k > have the same energy E(k) = = and they

are coupled by the potential U'(r) with matrix elements

1 o
S| FF s i _ Tl — — r —
< k|UIk >=< —k|U| —k >= RJ{JJIL (z) =
. 1 a ) o 1 . gima _jEma. o
and < k|U| —k >= EJ‘; del (z)e 24 — E_ﬂj,:dm“[ﬁr ik
1 _
= §[5¢-.a Ja + O U

E(k) 3 || Cs _.| &

i, Bk )| o .

or (E(K) =€ = 108 = 0= e = B(K) £ 21y = By = e, — e =T




Kronig-Penny Model

Consider a piecewise constant periodic potential U{z) = Ulx + nd), d =

period. For z in the period (0, d)

_ Dif0<r<a
Ulz) =

lhifa<r<a+b=d

We want to solve the 1D Schridinger equation

[-

In the well region (0 < = < a): ¥(x) = Acos Ko + Bsin K with K =
v2me/h. In the barrier region (a < r < d): (x) = Ceosh(Q(r — a)] +
Dsinh[Q(z — a)] with Q@ = /2m(Uy — €)/h

1.' }£+L{f1]w{£} ey(x).

2m o)

Boundary condition (B.C.) at z = a:

t(z) continuous: Acos Ka+ Bsin Ka=C

(x) continuous: K{—Asin Ka + Beos Ka) = QD.

In the next well region (d < = < d + a):

P(x) = A' cos[K(x — d)] + B'sin[K (x — d)] with A’ = ¢* A, B' = B




B.C. at z = d: ¥(z) continuous:
C'cosh Qb+ Dsinh Qb= A" and Q(C'sinh Qb+ D cosh Qb) = KB’
Using 1st B.C., we obtain

C cos Ka sin Ka A
D Q _sin Ka 5 cos Ka B
Similarly,
Jkd A _ cosh@b  sinh Qb C e A
B ©sinh Qb Lcosh@b ) | D B

cosh Qbcos Ka — smh Qbsin Ka ——
—— %sinh@bsin Ka+ coshQQbcos Ka

T =

T has two eigenvalues e* and e~

= Tr(T) = 2coskd = 2cosh Qbcos Ka + (% — a) sinh Qbsin Ka.



Plane-wave expansion

Let yx(r) = L Cu(G)e™ 95U (r) = L Uge ",
G G

where G's are reciprocal lattice vectors, Substituting into the Schridinger

equation
he . G .
= Il_ k Glzf:k{c‘rjl } E f.rcl jr!__—r-.k—['1—{:- ""t.'}k{r]r.f'Lr = f{:k(G]'
2 o
h: 2 r r
= ﬂ k - Gl C‘i.[:G] T+ E{'G"Ck{ﬂ' o G :I = EC“[GJ
'

In 1D case, we have

A Crl ) + FEIHL"f.'-r:J-f?fG"} = el} ()

where A\ = %{ k=G, Let € = ¢ = Uy, Assume G = =2q, —g,0,9,2g

(truncated basis)

Agy—¢ U, Uag ] 0
U, Ag—d U, Liag 0
[, Uy Ao—¢ U Uy, |=10
0 Us, U, Ag—¢€¢ U,
0 0 Uy, U, gy —¢




KP Model with plane-wave expansion

L‘."!t- -L" [_TJ — .-"'Iﬂ EJL{_E —_— Sﬂ] — z L:"{_:{:J'f:::
A I

1 1/2 b —ilrr
= g = - CdelU(x)e ™ dz = A for any G
i -l
A(Fk{{ﬁ:|+'lzfﬁk{(w}—ffﬁ; f;-:I:'}f () = P Ef.a“:
= Ag o
A
= fr = Eﬁ G) = E[ ) fx
€ — Aa
1 1 hK?
or 1_;_1§F—Jlf; _A;E—%{k e (Let ¢ = o
2m 1 1 Em 1 1
=iz K?— (k-2 = A LlE (k—%ll””“ﬁ%l
_m : (Z)(cot[(K — k)a/2)] + cot[(K + k)a/2]) ( Note: cotz = > M1+ )
mA ., a sin(ka) ~mAa sin(ka)

] sin[( K — k)g]sin[(K + k)3 — (37K coska — cos Ka

Aa
= cos ka = cos Ka + ];rﬁj—:‘ﬂllﬁﬂ =cos Ka+ (P/Ka)sin Ka.




Empirical Pseudopotential method

Use plane-wave expansion

Ui(r) = e*" Y Clk — G)¢®" ... periodic function

2
= [;_"{k - G}? — ek —G) + EU{GI GOk -G) =10

[just like in the nearly-free electron model]

e Assumptions:

(i)C(k = G) = 0for |G| = ke ... cutoff value .

(1)U (G) = l e U (r)dr = 1 e U (r)d
}

V. Jeett

= l f_’iﬂ'r[ZH.iI[I‘ — ﬁ:l]u'.:;r = E L',-[G]L'f{:'ﬁ

Ir el

Assume v,(G) = v;(|G]) ... spherical approximation
(iii) v;(|G|) = nonzero only for small values of |G|, implying a smooth po-
tential v;(r). This is valid only if «(r) here is the "pseudo potential”, instead

of the real potential.




For zincblende materials

[Ref: Cohen and Bergstasser, Phys. Rev. 141, 780{1966)]

L{G] =1, {G}(—:EG";" + T-‘,IJ{G}(’.EG"‘E

If we choose the origin of r to be at H E . [half way between the two

Ja = 7, and

atoms in a unit cell] then 7, = —x, = (;11 o é—‘

UiG)=vs(G)eosG - T+ ivy(G)sinG - T
vs(|Gl) = v, (|G]) + wl|Gl), val|G]) = v(IG]) — wv(|G])

vs(|G|) and v,(|G]) are called symmetric and antisymmetric pseudopotential
form factors.

Note: vy(|G|) = 0 for dimond structures

 Example: choose |G|* = 3,4,8,11(2)? [ for (111),(200), (220), (311) shells].
[Set U{0) = 0 ... arbitrary energy shift] v¢(4) has no contribution, since
cos(G - T) = cos(a/2) = 0. v4(8) has no contribution, since sin(G - 7) =
sin(m}) = (0. Thus, we only need 6 (3) parameters for zincblende(dimond

structures)[in units of rydbergs = 13.6 eV] :




EMERGY |eV)

ENERGY (eV)

WAVE VECTOR &

J. R. Chelikowsky and M. L. Cohen, Nonlocal pseudopotential
calculations for the electronic structure of eleven diamond and
zinc-blende semiconductors, Phys. Rev. B 14, 556 (1976)

parameters in units of rydbergs = 13.6 V] :
ve(3) wve(8) ws(ll) wa(3) wval4) wva(ll)
Si -0.21  0.04 (.08 () 0 0

Ge  -0.23  0.01 (.06 l 0 0
GaAs -0.23 001 006 007 005 001




Tight-binding model
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Core orbitals vs. valence orbitals

R A Y W A S A W A
\\U/ \U/ \&W/ \\U/ \\v/ \\v/

N degenerated states < v (r +a) =€ ()

<n,Is|H|nls>=0, n'#n
[droy (DHMP, (=0, n'zn



Coupling between neighboring orbitals

Hops(r —=R) = E;s0,(r = R)

e 2s-orbital _wv?

[ +V0(r _R)]¢25(r - R): E25¢25(r _R)
2m,

N N N N ./‘ O 000909090 O

£-2 £-1 £ (C0+1 €+2
—h*v?
2m,

CJdry l(HY () N

2s * -
jer2s(r)W23(r) D
N =3 e’ "™ [d’rp; (r—R,)Hp, (r -R))

— Z ei6’(n—m)L2
s,nm

n,m

L2$7nm = J.dSI’Q);s(r - Rm)[

[ +ZV0(r_R)_E2$]W2$(r):0
|

E

—h*V?
V (r-R -R
m, +Z‘ (r=R)le,s(r—=R))



Energy level versus k

« Renormalized atomic energy level E,.
e Overlap integral BZS

—h*V?
2

Ly = [ 1 @50 (r =R n # 2 Vo(r = R)lss(T-R)

= 5nm[zé‘l,nE25 +Z d3r¢23(r — Rn)vo(r - R )¢25(r o Rn)]
+9

G [T (T + RV, (T =R)gy(r +R)
= 5n,mE'25 +5

ntl,m—2s

E,.=E,.— B, cos(kea) \/ /



Band formation in solids

Energy levels form a continuous energy band
as the overlap integral increasea from zero




Tight-binding method
Linear combination of atomic orbitals (LCAO):

[J.C. Slater and G.F Koster, Phys. Rev. 94, 1498(1954)]:

1. construct Bloch sum of atomic orbitals

‘I’o-.i(kﬂ') = \/1—? < E’«ik'RﬁfJo (I‘ — R — 'ﬁ.‘)

where ¢, (r) is an atomic orbital of symmetry type a(a = s,z,y, 2, ... etc.).
Note: ¥, (k;r + R') = %{T Sre®Bo (r+ R —R —7)

= ?1? Sre eXBRHR) G (r —R” — 7)) = ¥R (k;r). It satisfies the Bloch
theorem. We expect that any linear combinations of ¥, (k;r) will also satisfy

the Bloch theorem.

2. Expand Wy (r) in terms of ¥, (k;r).

Uy (r) = ; Coi(K)W i (k;r).

3. Substitute expansion (2) into the Schrodinger equation. We obtain a

generalized eigenvalue problem.

Y. < VUai(k)|H|Puin(k) > Cuir(k) = &€ X | Vo (k) > Cai(k).

o' i i



4. &, (r) can be chosen to be slightly different from the atomic orbitals
with [ W, (ki)W (ki 1) = 8,08,
and we have an eigen-value problem

2 < Woi(k)|H[¥ori (k) > Coir(k) = Eaifk).

I'II

5. The matrix element

< q‘nl'{,kjlﬂl.lrn"i’ [_kj == ZEEI‘-R < ‘ﬁ':r{,r - ﬁJlquhr:.’{r -R - ﬁ'::l =
R
= &* RE(R).

E;{_r‘,'.][R} are empirical parameters to be adjusted to fit the band strueture
obtained by other methods requiring less fitting parameters (e.g. the empir-
ical pseudo-potential method),

6. To minimize the number of independent parameters, symmetry is used,
and R 1s truncated at a short distance (typically less than drd nearest neigh-
bor). For example, in a nearest neighbor sp® model for zincblende structures,
the only independent parameters are [assuming two atoms per unit cell):

EL24(000), EL#)(000), E{%(000), E(000),
ED(111), ESY(111), ERP(111), El9(111), B2 (111).




Comments

e Tight-binding model is the most efficient of all realistic band theories. The
computation involves a diagonalization of the Hamiltonian Matrix H,; oo =
R f"“'REf,'I:,:]I:R]I_. whose dimension is equal to the number of atomic orbitals
used per unit cell. For example, in an sp* model, for two atoms per unit cell,
the dimension is 8.

e If nearest-neighbor truncation is used, the result is analvtic along special
directions (100), (111}, (110) etc.

e Good band structures can be obtained if sufficient number of parameters
are used. The fit, however, is often non-unigque and one has to be aware of
this fact.

e very helpful in understanding the symmetry of Bloch states at various
points in the Brillouin zone,

e Spin-orbit interaction can be easily incorporated. When this is done, the

size of the Hamiltonian matrix will be doubled.




One-band TB model

Consider an fcc lattice with one atom per unit cell. Use one s-like atomic

orbital per atom.
E(k) =< U (R)|H|W,(k) >= Y *® < ¢4(r)|H||ps(r —R) > Eq:(000)
R
+E,,(110) Y e*B 4 ..
R
= By + 47[cos(k,a’)cos(kya’) + cos(k,a')cos(k.a') + cos(kya’)cos(k.a')] [a' = ;i]

Along [100] (ky = k. = 0): E(k) = Ey + 4v[2cos(k.a’) + 1].
Along [111] (k, = k, = k, = k): E(k) = Ey + 12ycos*(ka’) = Ey + 6v[1 +
cos(zka')].



Bloch’s function

The wave function | @ > which is an eigenket of T(a) can be
written as a plane wave ékX times a periodic function with periodicity

> E(k)
k crystal momentum

E +2A
2S
................................... E 0
: £, —2A
2s,2p orbital momentum
2p " k
a



Filling of Bands

# orbitals in a band = #k points in 1st BZ = # primitive cell in a solid.
Each orbital can be occupied by two electrons due to spin degeneracy. At
zero T, electrons fill the bands up to the Fermi level, or the highest level
below ep.

(1) If each primitive cell has (2v) valence electrons (even integer), then the
lowest v bands (valence bands) are completely filled and if there is a gap
between the filled band and the unfilled band (conduction band) then, we
have a semiconductor or insulator.

(2) If each primitive cell has (2v + 1) valence electrons (odd integer), the
lowest (v — 1) bands are filled and the v-th band is half filled, and we have a
metal.

(3) If there is an overlap of v-th band and (v + 1)-th band, then we have a

semimetal.



Important aspects

The discrete atomic energy levels become quasi-continuous
energy resgions, called energy bands, with certain band width.

There may be energy gaps between different bands.

Bands may have positive or negative curvature around the \/
band extrema.

In the vicinity of the band extrema one can often makes a
parabolic approximation

IS oo 2 /\
Ey0=Baoto—  Maa =5 h

2l = —
’ 2 lk=o rneff 21 2
X Aa

The states in the bands are filled according to the Pauli
principle, beginning with the lowest states. The last completely
filled band is called valence band. The next higher band is the
conduction band.



Insulator, semiconductor, and metal

(a) The conduction band is empty and separated by a large band gap from the
valence band. This defines an insulator. The electrons can not be
accelerated in an electric field since no empty states with slightly different
E(k) are avarilable. Therefore we have no electrical conductivity.

(b) An insulator with a relatively small band gap is called semiconductor.The
definition of small band gap is somewhat arbitrary, but a good operational
definition is to say that the band gap should be on the order of or less than
an optical photon energy. In semiconductors electrons can be moved
relatively easily from the valence band into the conduction band,e.g., by
absorption of visible or infrared light.

(c) If the conduction band is partly filled, we have a finite electrical conductivity

and hence a metal.

Glass Si.Ge Ag,Cu

-— A P N




Fermi surface of metals

o Fermi surface: Constant energy surface for € = ep,

Symmetry of band structure: F,(k 4+ G) = g,(k) ... periodic in reciprocal
Space.

[repeated zone scheme versus extended zone scheme)
E,.(—-k) = E.(k) ... time-reversal symmetry
« Group velocity vanishes at zone boundaries for non-degenerate bands

(Pf)For k = %1 +4), £(k) = E(—k) = E(—k + G)

— 5[%[1 +48)] = E[g{l — 4]

= H_!El.-"liﬂ = [0 or % = ﬁ_:li_q{k} = 1,
[

o Construction of Fermi surface:

1. Draw a sphere with volume vgz,

where ¢ = valency and gz = volume of BZ.

2. Distort the sphere according to properties of band structure.

(i.2. smooth the edges)



Schrodinger equation for periodic part

e F‘%(r)w@
Bloch theorem Band index

l// b(kar) = eikr ub(kar)
Bloch function

The Schrodinger equation for the crystal electron

2

[;n* SV, (MD]w (K,r) = Egp (K, T)

—h2 Crystal momentum h2k2

2m

[

Orbital momentum



K-p theory

Ivr2 |
[—ﬁ' % o L‘r{rj]ﬂjf'k{r Erl{k:' .l.-k[ ]| 1:.':1”*.[[') — ok

2m

Uk (1)

Hytink fr} - E!r{k]u.lrk [r:h

72
where Hy, = 3_{ —iV+ k)P +Ur) = —{p'*' + 2k -p+ k%) + Ulr)
2m
miv: h he ke
= [_ 2m +U(r)+ m_[k ) ];J':I]if"]. ['E” k) — 9, ]an (r)
'F |"
[-Hl] + k P ]u.l-l]-: - Hl:k}"'rlk{r}

Lk - p) is treated as a perturbation.

EL

* Zeroth-order solutions are: w,,(r) with energies £,(0]).

Expansion: w,y(r) = > O (k)u,,(r)

'

= 2{[&(0) - &, (K)]dnnr+ < 'H-rmI:rTlr{k - p)luwo >}Ch(k) = 0.




Full zone k-p theory

[Cardona & Pollak, Phys. Rev. 142 ,530 (1966)]

Keep sufficiently large number of u,, | e.g. lowest 15 states corresponding to
k = (000), 8(111)’s, and 6(200)’s].

e Comments:

Solutions obtained are good for k throughtout the entire Brillouin zone.
Matrix elements < u,,o|p|u,g > can be computed from pseudopotential method
or taken from experimental data (cyclotron resonance).

When the group theory (symmetry) is used, only the independent matrix
elements need to be determined for covalent material (Si,Ge,a-Sn etc.).

For III-V materials, one needs additional six parameters. The band struc-
tures do not have correct periodicity (not valid in repeated zone scheme)
Most, accurate near the zone center, predicting best effective masses among
all the models. Near the zone-center, band structures can be calculated by

second-order perturbation theory.



[ E. O. Kane, J. Phys. Chem. Sol. 1, (1960)]:

A. Non-degenerate case: [e.g. conduction band of most semiconductors (s-like

band)]

hik? | < ttno| Lk - P|an{} > |?
+ < upp |_(k P)|Uu{} >+ Z =
2m n'#n H(U) fi (U)

| NOTE: < um}|_r—lk - pltng >= 0 by symmetry]

E.(k) = E.(0) +

hik?
= B,(0) + - X(1/m")ijkik,
ij
1 1 1 p::, n' pn, n' 4+ pn, n' p::, an'
1 Y= e j ;
where (Irn'*)tlf m &) + I‘HQ -;fz#ﬂ 'IL(U) -rl ( )

is called the effective-mass tensor.

.’

pi =< urﬂ[}lp?lurz’l[} > .

For cublic crystals (including sc, bee, fec, diamond, and zincblende), we have

h2k?
2m*

E.(k) = E,(0) +

Here the effective mass tensor is reduced to a scalar.



Meaning of the effective mass

Bare electron mass m, _,@)
Effective mass
(1/my )ij =1/Wb(5i,- t2p P /(Egm)))
N[ N VAN VAN AN
S N NSNS NN

Isotropic cases

m,

. . (mc,v)eff - 2
For electrons in conduction band + - 2<clp|v>

For electrons in valence band — / m,E,
Effective mass can be measured
by cycltron resonance experiment



Band with degenerated states

* |solated atom Si 3s’3p’

« Semiconductor 3sp’
* In the presence of spin — orbital interaction only the total angular

« Momentum,i.e. the sum of the orkital and spin angular momentum,
* IS a conserved quantity.

_i 4 f . )(_> —
[H= om D+ e’ WI(N)xplug(k 1) =E,Kyg k1)

p h ——
+V(r)+—Kk-p+
{2m0 (") m, P 4m;c’

(E,(K)-%r’k*/2m))u, (k,r) <«—— Timereversal symmetry

[VV(r)x(p+K)]-ou,(k,r) =



B. Degenerate case: [e.g. valence bands of semiconudctors]
Let |u,(0) > denote the J-fold degenerate states at the zone center (I" point).
Ignore the interactions among |u,(0) >’s first. The first-order correction to
the perturbed state due coupling to other states is given by

B < u,(0)| Lk - plu, (0) >
|uy (k) >= |u,(0) > +.,,.,:Z#,; E,(0) — E,(0) |t (0) > .

Thus, the first-order correction to the energy for states |u, >’s are given
by diagonalizing the perturbed matrix within the J-fold basis (degenerate
perturbation theory)

) ,(0)| 2k - plun (0) >< wy (0)| 2k - ple, (0) >
H!-{r'li.r]'lr = Ei«' 0 f}'y.y’ + Z = ( o m .
.. (0)dy, e E,(0) — En(0)

For cubic crystals with p-like valence bands (e.g. Si, Ge, GaAs, InAs,...), we
have
Ak2 + B(kf, + k2) Ck,k, Chk.k.
HY = — Ak2 + B(k2 + k2) Ck,k. ,
A7.2 2 2
- - AR? + B(K2 + k2)
where A, B,C are three band parameters, which are determined experimen-

tally (typically via cyclotron resonance measurements).



The valence bands become 6-fold, since J = 1®1/2 =1/2,3/2. The top four
valence bands are given by |3/2,3/2 >= —?lf“.ﬂ > +ily >) 1,13/2,1/2 >=
—7%(|.:: > +ily >) L 2|z >T, |3/2,-1/2 >= 7%('.{? > —ily >) T 42|z >
13/2,-3/2 >= L(lz > —ily >) 4.

( A

A, L M 0
g - 0| B4 0 M
2m | pm+ 0 A —L |
\ 0 M* —-L* A, J
where

As = (m £72) (k3 + k) + (71 F 272)k2,
L= —2iV3y3K k.,

M= —V37K ™" + (v2 — m3)k.k,

K* = (k: +iky),

~1,7%2,73 are called ”Luttinger parameters” and they are related to A, B,C

by 11 = 5(A+ B),y2 = §(A — B), and 3 = ;C.



Degenerate Valence bands

e J=3/2

e J=1/2

|3/2+3/2>—|mL—i1{1} /
J
|3/2,i1/2>=i[\/§|mL O{H>+|m +1

NE)

|1/2,£1/2 >:%[—| m =0,|:$:|>+\/§| m, :il,{*} >]

Kane’'s model X
Luttinger-Kohn’s model v

N
E,
N



Littinger Model

Hamiltonian for heavy and light hole
bands in spherical approximation

Hvzh—z[[ +27,9¢ -2 (R.ﬁ)z}
m N 27/2 %
hik?
For m=+> Epy =(7,-27,) ™
1 h'k?
For mJ:iE E,=+27,) om
|
. = n}lo (7 =27,) — (1) )

~

ke

J=3/2

] ]
—=—1+2y,) —(2
mm ) (2)



