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Spin-dependent transport structures.
(A) Spin valve. (B) Magnetic tunnel

junction.
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20
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Fig. 1L58. Dependence of saturation field on Ru spacer layer thickness for several series of
Nig, Fe,,/Ru multilayers with structure, 100 A Ru/[30 A Nig, Fe,q/Ru(ty,)]sq. Where the topmost
Ru laver thickness is adjusted to be =25 A for all samples




Fig. 2.11. Fermi surface of Cu in

the (100) plane in the exiended
zone scheme. Arrows ndicate
values of 2{ky — @) for reciprocal
lattice vectors G which can give rise
to oscillations with periods greater
than n/kg
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Fig. 241. A schematic expanded view of the sample structure showing the Fe{00 1) single-crystal
whisker substrate, the evaporated Cr wedge, and the Fe overlayer. The arrows in the Fe show the
magnetization direction in each domain. The z-scale is expanded approximately 5000 times. (From
[2.206])
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Fig. 2.10. RKKY-like osallating exchange
coupling with period 4 (solid line) showing
the longer period oscillation (dashed line)
obtained by sampling the function only at
integral values of the spacing, a, between
atomic planes, 1.e. “alhasing”. From [221]




—

(A) Doping phase diagram for L a-
xSr1+xM 207 , extracted from Ling et
a. (2). (B) Resistivity versus
temperature curves for

L &u2Sr1sMn207 at various magnetic

Temperature

fields, after Moritomo et al. Nature
380, 141 (1996)
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Madgnetic field sensors
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12. spin wahe transitar

A large variety of magnetic field sensor principlesis available.
Of mgor interest is the recently discovered spin valve effect,
appearing in an increasing number of varieties. High density

recording isamajor application of the spin-valve effect. 75 3
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d=1.6um, [=4mA

M. Johnson, PRL 70, 2142 (1993)

(a) Pedagogical model of three
terminal device. Arrowsin F, and F,
refer to magnetization orientation as
determined by majority spin subband.
(b) Diagrams of the densities of state,
N(E), of the ferromagnet paramagnet
ferromagnet system depicted in (a). (C)
The geometry used to measure V., P
IS depicted transparent.
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Hot
electrons

collector

Schematic cross-section of the spin-
valve transistor. A Co/Cu/CO
sandwich base is sputtered on a silicon

substrate. Vacuum bonding is done
while sputtering the Pt layer.

The picture shows the band-structure
of the spin-valve transistor




A scanning electron microscope photo of
several vacuum bonded and fully processed
Si-Co-Cu-Co-Pt-Si spin-valve transistors.

Collector current variation versus magnet
field at a emitter current of 25maA,
temperature 100, 200 and 300K, range
from -240 to 240 KA/m. The inset on the
|eft-hand side accentuates the small field
behavior from -24 to 24kA/m
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Device applications. (B) courtesy of NVE; (D)
courtesy of Motorola é
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N— injected spins
( non-equifibriunt

magnetization ) From Roukes et a, Caltech

* Major advantage to using InAs instead of
GaAs is that unalloyed metal contacts can
be made directly to InAs.



Vertical spin transistors are fabricated by
sandwiching ametallic "spin valve" base
petween a gallium arsenide emitter and a
silicon collector. These stacks are created by
. wafer bonding in ultrahigh vacuum, while
the metallic base layers are built up by thin-
film techniques. IMEC researchers have aso
experimented with alternative fabrication
routes, such as growing epitaxial magnetic
semiconductor structures by depositing
semiconductors and magnetic metalsin a
molecular beam epitaxy system.
Another device investigated by SPIDER is
the lateral spin transistor —a magnetic
version of afield-effect transistor. This
device is fabricated by placing two magnetic
contacts, the source and drain, on a
semiconductor channel. A spin-polarized
From IMEC current flows between the source and drain,
and the drain current can be modulated b
changing the magneti zati opgihe
source and drain electrodeSg$.
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EL intensity (arbitrary units)

ture 402, 790 (1999) Electrical spininjection in an epitaxially
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grown ferromagnetic semiconductor
heterostructure, based on GaAs. a,
Spontaneous magnitization devel ops below the
Curie temperature T in the ferromagnetic p-
type semiconductor (Ga,Mn)As, depicted by
the black arrows in the green layer. Under
forward bias, spin-polarized holes from
(Ga,Mn)As and unpolarized electrons from the
n-type GaAs substrate are injected into the
(In,Ga)As quantum well (QW, hatched region),
through a spacer layer with thickness d,
producing polarized EL. b, Total
electroluminescence (EL) intensity of the
device (d = 20 nm) under forward bias at
temperature T = 6 K and magnetic field H =
1,000 Oe is shown (black curve) with its
corresponding polarization (red curve).

Current | = 1.43 mA. Note that the polarization
Islargest at the QW ground state (E = 1.34 eV).
The EL and polarization are plotted on semi-
log and linear scales, respectively. Inset, a
current-voltage plot characteristic of a 20-nm

! =R 1L
spacer layer device.. 6 @




Three types of semiconductors: (A) a magnetic semiconductor, in which a
periodic array of magnetic element is present; (B) adiluted magnetic
semiconductor, an aloy between nonmagnetic semiconductor and magnetic
element; and (C) a nonmagnetic semiconductor, which contains no magnetic ions.
(From Ohno, Science 281, 951 (1998).)
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Growth inhibited, formation of MnAs

& Metallic (Ga,Mn)As
b
- |
&
;E-EDD_I lating (Ga, Mn)A
@ nsulating 13d,MnIAS Insulating (Ga Mn)As
i
™ Roughening
i
i
I
Polycrystalling

0.02 0.04

Mn compostion X In Gaq.,

Schematic phase diagram showing the relation between growth parameters
(substrate temperature and Mn concentration) and the properties of (Ga,Mn)As
grown by molecular beam epitaxy. The high concentration of Mn in excess of its

solubility limit was introduced by nonequilibrium growth at low temperatur
(From Ohno, Science 281, 951 (1998).)



Ga MnAs

Zn, MnTe
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Hole concentration (cm™)

Normalized ferromagnetic temperature T "o as a function of hole concentration.
Inset shows an example of the cross section of the Fermi volume of holesin a
ferromagnetic zinc-blende semiconductor: Nonzero magnetization leadsto a
splitting of the valence band into four subbands. This complex valence-band
structure was used to determine the mean-field values of T."" for p-

Gay osM Ny osAS and p-Zn, =M n, o Te (solid lines) and to establish thgeemi
trends. (From Dietl et al, Science 287, 1019 (2000).)
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Curie temperature T in Zn,, Mn, Te:N for various Mn contents x and hole
concentrations p deduced from the Hall resistance at 300 K. The plane with
upper crosses corresponds to T = 0. Experimental values are marked by blue
spheres (22) and theoretical predictions by the red mesh and attached yellow
spheres. T is determined by a competition between the hole-induced
ferromagnetic interactions (characterized by T-"") and the antiferrggsk
interactions, described by T, g, shown by the plane with lower crd

Dietl et al, Science 287, 1019 (2000).)




100
Curie temperature (K)

Computed values of the Curie temperature T for various p-type
semiconductors containing 5% of Mn and 3.5 x 10%° holes pecéﬁ
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ance (Disc. 1988)
ange Resistance (or Current)
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e sors; MRAM (Tunneling)
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B. Current-Driven Switching ='Inverse’ Effect. (Pred. 1996)

First F PolarizesJ. Polarized J exerts Torque
on second F. +J_Flipsto AP; -J_Flipsto P.

Writein MRAM? Writeon MR Media? g
J‘ Q: Physics; MinimizeJ, 9
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Spin-polarized Current

M agnetization

Polarized Current Exerts
Torgue on F2 when F2 M oment
Isnot Parallel or Anti-Paralle
to Polarization.

FIRST EXPERIMENTS
1998 (PRL), 2000 (Nature): MSU + Grenaoble
Coherent Spin-Wave Generation?.
1999-2002 (PRL & Science): Cornell.
L ayer Magnetization Reversal.




and dV/dl vs|1 (+small ac current).
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