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Principles of optical imaging



Image formation in an optical microscope I

Conjugate Field Planes in the Optical Microscope ;
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Images are from http://micro.magnet.fsu.edu/



Abbe’s image formation theory I

The diffraction patterns

Gratings represent the of every Fourier
Fourier components Lens , component interfere at
of an object. Grating : A the image plane to
form the image.
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Abbe’s theory for image formation in a light microscope. An objective lens focused on a
grating (2f > a > f) in the object plane produces a magnified real image of the grating in the
image plane. The diffraction plane is located at 1fin the back aperture of the lens. An
incident planar wavefront is shown. Diffracted nth-order and nondiffracted Oth-order rays are
separated in the diffraction plane, but are combined in the image plane.

Ref: D. B. Murphy, Fundamentals of Light Microscopy and Electronic
Imaging (Wiley-Liss, New York, 2001).



Why does optical resolution have a limit? I

Higher spatial frequency components lead to larger
diffraction angles. Resolution limit is inverse of the lowest
spatial-frequency that cannot pass the lens aperture.
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Fraunhofer diffraction of a lens I

If z>> d?/1, we can describe diffraction of alens by the
Fraunhofer diffraction theory.

v (x,y,2) =(—ii—jexp(ik2)ﬂw(xo, yo,O)exp[—%(m + yyo)}dxodyo
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Fraunhofer diffraction: a circular aperture

image plane

From R. Guenther, Modern Optics

p=3.832; or sinf=1.221/2R

Thispatterniscalled Airy disc.



Angular resolution of an aperture I

I e
6=1.224/D

Consider two stars (point sources) in the space imaged by atelescope. The
angular radius of theimageis 1.221/D (D = 2R). Thisis called the angular
resolution of the telescope, aso known as the Rayleigh criterion.



Radius of the Airy disc
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/ image plane

6 =1.224/D

On theimage plane, r, = d.6 = 1.224(d./D).
The observer will see the disc as the image of
apoint. And the radius of the disc on the
object planeisthusr =r,d /d, = 1.224(d /D).

The Airy disc on the object planeis called the
point-spread function (PSF) of the lens.




Radius of the Airy disc formed by an objective I
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HMumarical Aperture and Alry

To have an image through an objective,
one may consider that an imageis
formed by summation of many “discs.”
Each disc has afinite radius of r.
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——a Airy disc

Images are from http://micro.magnet.fsu.edu/ 10



Numerical aperture and resolution I

This is called “point-spread” function (PSF).

Rayleigh criterion:
resolution ~ 0.611 /NA 0.611/NA

For dry samples, NA < 1.0

clearly resolved resolution limit

Ref: M. Born and E.Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 8.
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Specifications of an objective I
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Images are from http://micro.magnet.fsu.edu/ 1



Aberrations I

Axial Chromatic Aberration
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Images are from http://micro.magnet.fsu.edu/ 13



Compensation of objectives I

Objective Spherical Chromatic Field
Type Aberration Aberration Curvature
Achromat 1 Color 2 Colors No
Plan Achromat 1 Color 2 Colors Yes
Fluorite 2-3 Colors 2-3 Colors No
Plan Fluorite 3-4 Colors 2-4 Colors Yes
Plan Apochromat 3-4 Colors 4-5 Colors Yes

Images are from http://micro.magnet.fsu.edu/
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Confocal Microscopy
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Confocal microscopy I
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Improved depth resolution

Butterfly Wing Epithelium

Optical Section Z-Serles
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Three-dimensional point-spread function I
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Ref: Carl Zeiss, Confocal Laser Scanning Microscopy 17
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Ref: Carl Zeiss, Confocal Laser Scanning Microscopy
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Resolution Enhancement
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Deconvolution in optical microscopy I

Deconvolution Algorithm Comparison

(a) original (raw) image

(b) deblurring by a nearest neighbor
algorithm

(c) deconvolution by an inverse
(Wiener) filter

“‘ e = (d) by iterative blind deconvolution

incorporating an adaptive point
spread function

(c) (d)
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Image-formation of an optical system I

Ideal linear shift-invariant imaging system object

image\.wh( y— x)f (X) dx

PSF I Fourier Transform
G(w)=H(o)F (o)

OTF
Practical linear shift-invariant imaging system

a(y) :jh(y— x)f (x)dx+n(y)
I Fourier Transform

G(w)=H(w)F(o)+N(w)

21



Why direct deconvolution fails I

H(e)

Fourier Transform :
. T
_-milh TlImllrfl.l-nman

Band-limited character of the optical transfer function (OTF) H(w)

=» results in divide-by-zero for high spatial frequencies;
=» enhances high-frequency noise.

= If H(w) also has noise, deconvolution does not work at all.
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Weiner filtering I

By adding a non-zero value K in this form, the problem of small values of
H(w) can be avoided:

T e CC R

H () ‘H (a))‘2 +

Usually, the value of K is determined according to
the width of H(w) and the magnitude of N(w). This
is called Weiner filtering.

Weiner filtering is capable of enhancing the
edges. However, it reduces the intensity in the
flat area.
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Maximum-likelihood estimation I

object space

many-to-one mapping
_______________________ image space

Maximume-likelihood estimation can be used to find a
solution for such a “many-to-one” mapping problem.
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lterations of maximume-likelihood estimation

Maximum-likelihood estimation

Read measured image 9(Y)
and A
guess “false object” °

Yes

computed object

\

Ekelpy _ £k a(y) _

fi = f (x)i Ty P (0 h(x—y)dy
2N //

Ref: G. M. P. van Kempen et al., IEEE Eng. Med. Biol. 15,
76 (1996). 25



Resolution improvement: high-frequency components

offo
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Super resolution by restoring high-contrast image |

To approach super resolution we need high contrast, such as that
provided by fluorescent or scattering labelling.

Restored by an iterative algorithm

. 100 nm
i

—_—

Sample: microtubules in a rat kidney cell

After 2000 iterations, ~ 50-nm lateral resolution is achieved.

Ref: W. A. Carrington et al., Science 268, 1483 (1995). -



Commercial software products are available |

This image is from Scientific Volume Imaging BV. http://www.svi.nl/
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Deconvolution based on
topographic contrast
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Topographic contrast is also useful for resolution enhancement
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Objects smaller than the
resolution limit can have high
contrast because we can detect
the topographic features.
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DCM | 4 ) A 140-nm-wide line observed by differential
mage  restoredimage  SEMimage confocal microscopy.

C.-H. Lee, H.-Y. Chiang, and H.-Y. Mong, Optics Letters 28, 1772 (2003). 30



Resolution limit

intensity (arb. unit)

sample : bead
(coated 15-nm gold)

. i e scale bar =200 nm
DCM image restored image SEM image
( pixel size : 15 nm
pixel : 80 x 80)
o Noise is higher at spatial
10 [~ : frequency ~ 9.5 um-
signal quency pm, g
I9 equivalent to 105 nm. ...frequency components above
10t E the crossover frequency cannot
N be recovered...”
102 D. L. Snyder et al., IEEE Trans.
Medical Imaging 6, 228-238
103 (1987).
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Resolution enhancement based on widefield optical profilometry

SEM image Topographic image Restored topographic image

200-nm Cr line

365 nm (A)

100-nm holes

k.
I ‘

Optical image SEM image Topographic image Restored topographic image

S.-W. Huang, H.-Y. Mong, and C.-H. Lee, Microsc. Res. Tech. 65, 180 (2004). 32



Applications on cell dynamics
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The NIWOP system |

Pixel size = 115 nm

L Incubator
—. =

14 bit

CCD car / pippet
. Grid ol
ﬂ ﬂ Ilﬂ 60X, NA=1.2,
Diffusor  filter pzt water-immersion
"-'C) objective

Optical resolution = 250 nm

Power-regulated
lamp

A conventional bench-top microscope is used
to construct a NIWOP system.



NIWOP in an incubator
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The filopodium |

Filopodium ( )

Lung cancer cell CL1-0

1. Bundles of actin filaments

2. Related to cell migration

3. Related to cancer metastasis
4. Diameters about 100—-300 nm

actin filament membrane

Ref: T. M. Svitkina, et al., J. Cell Biol. 160,
409 (2003).
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Filopodia are related to cell migration |

vascular smooth muscle cell

SPC: sphingosylphosphorylcholine
GbaSM-4: vascular smooth muscle cells

Ref: N.

Breast epithelial cell

MCF-10A : Breast epithelial cell
PL + LOX: placental lactogen + Lysyl oxidase

PL + LOX -transfected cell
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Migration is related to cancer cell metastasis |

Primary site

Metastatic site

Il'lvm':ivm'*uun|::|!|nﬂlu£d;=.|e-..h

Thez tumor cell then
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For distan spread, it
intravasaies a lymiph or
vasculr channel,

Ref: D.-H. Geho et al., Physiology 20, 194 (2005).
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Filopodia are related to cancer metastasis |

Filopodia are thought to be positively related to cancer cell motility.

Lung cancer cell Colon cancer cell

Ref: J.-Y. Shih et al., J. Natl. Cancer Inst. 93, Ref: O. Kovbasnjuk et al., Proc. Natl. Acad.
1392 (2001). Sci. USA 102, 19087 (2005).
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Seeing the filopodia without fluorescence labeling

Bright field

Lung cancer cell CL1-0

T.-H. Hsu et al., Optics Express 15, 76 (2007). 40



Epidermal growth factor (EGF) |

B EGF regulates cell proliferation and differentiation
by binding to the extracellular region of the EGF
receptor (EGFR).

B EGFR is abundant in cancer cell.

B Filopodia play a major role for retrograde signal
transduction related to EGF.

Ref: H. Ogiso et al., Cell 110, 775 (2002).

¢ Pra-bleach

Ref: D. S. Lidke et al., J. Cell Biol. 170, 619 (20021.



Number of filopodia affected by EGF |

Filopodia threshold: contrast > 20% and length > 1 um

(a) Before the treatment of EGF (b) 10 minutes after the treatment
of 50 ng/ml EGF

Number of filopodia: 17 Number of filopodia: 32
T.-H. Hsu et al., Optics Express 15, 76 (2007). 42



Dynamics of single filopodia |

(a) Before treatment of EGF

00:00 00:21 00:39 00:51 01:00 01:06 01:15
(b) After treatment of EGF

."'ﬁ F
| 5 1

00:00 00:03 00:15 00:33 00:36 00:51 00:57

Nine filopodia of this cell are measured:

\ Elongation rate (nm/sec) | Shrinkage rate (nm/sec)

Before EGF treatment 90+11 75+ 6

After EGF treatment 110+ 12 100 + 15

T.-H. Hsu et al., Optics Express 15, 76 (2007). 43



Highlighted in Virtual Journal for Biomedical Optics (February 2007)

The Virtual Journal for Biomedical Optics
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Conclusions |

1. Optical resolution (point-spread function) is determined by
the wavelength and the numerical aperture of the
objective.

2. With images of high signal-to-noise ratios, deconvolution
technigues can greatly improve the resolution.

3. With nanometer topographic contrast, bright-field images
can also be improved to “super-resolution.”

4. Without strong illumination required by fluorescence

microscopy, super-resolution bright-field microscopy is
more suitable for long-term observation of cell dynamics.
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