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Fig. 5.3 Mass spectrum of Laser evaporated Carbon clusters.
9 P P Even N: closed structure

The C4, and C,, peaks are evident.



1.388 A (C=C:1.34 A)
1.432A (C-C:1.53 A)

' Fig. 5.6 structure of Cgo fullerene molecule

econtains 12 pentagonal and 20 hexagonal
eThe pentagons are needed to produce closed ( convex ) surfaces,
and hexagons lead to a planar surface.

Electric properties:
= Pure Cgyis an electrical insulator
= C4 doped with alkali metals shows a range of electrical conductivity:

— Insulator (Kg Cgp) to superconductor (K5 Cgp) < 30 K!

Cqo> with 3ionized K*, a highly disordered material

Other superconducting compounds:
Rb3Cyp, CS3C40, NagCyy



Nanomechanical oscillations in a single-C, transistor
Hingkun Park et al. Nature 407, 58 (2000)

Small bias — Quantized levels
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Large bias — mechanical oscillation
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MULTI WALLED CARBON NANO TUBES l

T Multiwalled carbon nanotubes
3.5A

Multiwalled nanotube consists of
capped concentric cylinders separated by ~ 3.5 A.

Three common cap terminations

a) A symmetric polyhedral cap
b) An asymmetric polyhedral cap
c) A symmetrical flat cap
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(e) by TEM, multiwalled

(d) by STM

(a) Armchair (b) zigzag (c) chiral



Three major categories of nanotube m =n “Armchair”
structures can be identified based m=0orn=0"Zigzag
on the values of m and n m #z n “Chiral” Nature 391, 59, (1998)
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Scientific American December 62 2000

ternad boosts. only a few electrons can access the narrow path to a conduction state. '
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STRAKZHT MANOTUBES ook ke a sraight swath cut From a sheet of graphite (2] arnd molled into s

tube (genter], The geametry of nanotubes Breats electrons 1o a select few slices of graphite’s enesgy Semiconducting
states {righrl Depending on the diameter af the ube one of these shioes canirclude the narow path
that joins electrons with canduction states This specal point, called the Fermi point, makes twao thirds
of the nanciubes meta i, Otherwise, if the dices miss the Fermi point, the namoatubes sermmconduct.
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TWISTED MAMNSTUBES, cut at an angle from graghite (i), ook a bit e barbershaop poles foenred, The
slices of allowed enargy states for electrons (right) are simifarly cut ar an angls, with the result that I
about tas thirds of twisted tubes mess the Fermi point and ane sesmiconducion. s

Samiconducting

“Armchair” always metallic



A Split Personality

Metal / Semiconductor / Graphite

ELECTRICAL PROPERTIES of a material depend on the separation between the collection of energy
states that are filled by electrons (red) and the additional “conduction” states that are empty and avail-
able for electrons to hop into (light blue). Metals conduct electricity easily because there are so many
electrons with easy access to adjacent conduction states. In semiconductors, electrons need an ener-
gy boost from light or an electrical field to jump the gap to the first available conduction state. The
form of carbon known as graphite is a semimetal that just barely conducts, because without these ex-
ternal boosts, only a few electrons can access the narrow path to a conduction state.

Scientific American December 62 2000
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7 — 5— Flg. 2. (a). Band structure of a graphene sheet (top) and the first
% *— Brillouin zone (bottom). (b) Band structure of a metallic (3,3) CNT.
- —~~— () Band structure of a (4.2) semiconducting CNT. The allowed
states in the nanotubes are cuts of the graphene bands indicated by
the white lines. If the cut passes through a K point, the CNT is

o metallic; otherwise, the CNT is semiconducting.
http://www.ece.eng.wayne.edu/~jchoi/06012004.pdf

J. Tersoff, APL, 74, 2122, (99)

a) Graphite
Valence(n) and Conduction (n*) states touch at 6 Fermi points

Carbon nanotube:
Quantization from the confinement of electrons in the circumferential direction ircumferen -n
b) (3,3) CNT; allowed energy states of CNT cuts pass through Fermi point — metalli cC cumference = nig

c) (4,2) CNT; no cut pass through a K point — semiconducting Ahv

: : gap
In general, for a chiral tubule, we have the following results: 3dCNT

n-m = 3g metallic, no gap 2.46\/n2+nm+ m?

n-m # 39 semiconductor with gap dCNT =
2




ENERGY GAP (aV)
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Fig. 19.27. Electronic 1D
density of states per unit cell
for two (7, m) zigzag tubules
based on zone folding of a 2D
graphene sheet: (a) the (9, 0)

tubule which has metallic behawvior,

(b) the (10,0) tubule which has
semiconducting behavior. Also

shown in the figure is the density

of states for the 2D graphene
sheet (dashed curves) [19.98].
(c) Plot of the energy gap for
(n,0) zigzag nanotubes plotted
in units of y, as a function of
r, where vy, is the energy of the

nearest-neighbor overlap integral

for graphite [19.100].
~2.5eV
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Curves Nos 1-7 show a low conductance at low bias, followed by several
kinks at larger bias voltages, however, the armchair tube does not show
clear kinks in the range -1to +1 V.

Gaps are indicated by arrows. Two categories of gaps: one with gap values
around 0.5 - 0.6eV(semiconducting); the other with significantly larger gap

values,1.7 - 1.9eV (metallic).

Gap Egap versus diameter d for semiconducting tubes: solid line denotes a
fit of Egap =2y yac/d with y ,=2.7¢eV.
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Cross-section view of the vibration modes

Determination of the tube diameter
from A, Raman vibration frequency
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One can then “guess” a set of (m,n) from

Figs. 5-19 and 5-20

2.46:/n? + nm+ m?
> nm
T

dCNT =



Properties of Carbon Nanotubes:

* High carrier mobility — ballistic transport(<1-10um);~>10,000 cm?/V-
sec(>10um ) (Si<500 cm?/V-sec).

 High current carrying capabilities: J=10°A/cm? (Most metal fails at
<10°A/cm?, Si~ 10°A/cm?).

* No Interface states - any dielectric is in principle possible (Si devices
need Si0O,).

« Potential for optical devices — direct bandgap material, bandgap
determined by diameter (Si is indirect).

« Potential for sensor applications — all the atoms are on the surface.

« Diameter determines semiconducting (2/3) vs metallic tubes (1/3), and
placement.

http://www.cns.cornell.edu/documents/CornellUniversity PN_Diode 2005 Final 1of3 000.pdf



Conductance quantization for metallic carbon nanotubes
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Science, 280, 1774 (98)

Quantum cond'.ijptance in Multiwalled CNTs

250 Traces

oo 2000
Irteraity (arb. uniis)

Fabry-Perot interference in a

nanotube electron waveguide Nature, 411,665 (01
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Quantum Interference and
Ballistic Transmission in
Nanotube Electron Wavegwdes

PRL, 87, 106801 (01)
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Transition from anwm?w«..

= | Temperature = 280% |
£ go- 100 .\5‘%‘,‘ r =2
FET to SET P} araha
% 40- : 'X,‘ .
'é - 40 0 40 N
0= vy {rrn"-"ll . . ;""~=.
-0 -5 0 5 10
NANOTURE— | Gate Voltage (V)
CHANNEL
SILICON DICKIDE g < 100- Temperml'a 7K |
INSLILATOR . I su\ [aa= 5] g - : -rf:
5 E a0 '"'I .
E E 40 ? i I- i [
Sk ﬁ\ 40 0 40
: O
P i ol . Vs
As we cool the FET down from 20 5 10 5 0 5
room temperature to 4 degree Gate Voltage (V)
Kelvin (minus 460 degree Memperature = 4 2K v

Fahrenheit) we see the device
behavior change dramatically.
While the device acts like a field-
effect transistor at room
temperature, at 4K it behaves like
a single-electron transistor (SET). -20 -18 -16 -14 -12 -10 -3 -6
Gate Voltage (V)

http://www.research.ibm.com/nanoscience/fet.html



A SWCNT “NOT” GATE
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Wiring two CNT in a CMOS circuit

b)

-1.0

-2.0

EXPOSED TO OXYGEN 107 torr O, for 3min

7'
Protected by PMMA o | &
- -|=| —
=, Nat protected & o 4 B
Tl B

;ﬁwe unprotected one
turns back to p-type

*Ti‘;f"ﬂl;:jmr.
form an inverter

10

T I
-5 ¥ 5 10 15

V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris
Nano Letters, 1, 453 (2001)



A SWCNT CMOS device

1. Two p-type CNT FETs in series
2. Potassium bombardment on the unprotected one results in a p—n conversion
3. CMOS CNT FET with gain = (V,_/V;,) > 1



Nanotube Molecular Wires as Chemical Sensors

Science, 287, 622 (2000) J. kong et al

NH; : suppresses conduction
NO, : increases conduction

NO, binding causes transferring of charge
From CNT to NO,, resulting increased hole

Concentration in CNT.
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Fig. 5.25 of the text book



Application in Field Emission Display e

A

ITO glass anode
Phosphor

arrqy

Nanotube/
metal cathode

SPACER

Fig. 2. (A) Schematic illustration of a flat panel display based on carbon nanotubes. ITO, indium tin
oxide. (B) SEM image (49) of an electron emitter for a display, showing well-separated SWNT
bundles protruding from the supporting metal base. (C) Photograph of a 5-inch (13-cm) nanotube
field emission display made by Samsung.
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CARBON NANOTUBE
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Questions:
Electros are in extended state throughout the entire tube or in the segment between two lead?
Will presence of defects cause electron to localize?



